EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Shrinkage Study of High Performance Concrete for Bridge Decks

Download or read book Shrinkage Study of High Performance Concrete for Bridge Decks written by Tengfei Fu and published by . This book was released on 2013 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of civil infrastructure, bridge desks are typically constructed using high performance concrete (HPC). Concrete bridge decks demand qualities such as low permeability, high abrasion resistance, superior durability, and long design life. Over decades of field and laboratory experience, many HPC bridge decks have been found to be susceptible to shrinkage and subsequent cracking, which is regarded as a significant cause for premature deterioration, increased maintenance costs and even structural deficiency. Appropriate shrinkage limits and standard laboratory/field tests that allow proper criteria to ensure crack resistant HPC are not clearly established either in the technical literature or in specifications. A comprehensive study is presented in this dissertation on shrinkage and shrinkage induced cracking in HPC, with four main objectives: 1) mitigate the shrinkage and cracking issues in HPC using internal curing by fine lightweight aggregate (FLWA) and/or incorporation of shrinkage reducing admixture (SRA); 2) improve the standard ASTM chemical shrinkage test method for HPC systems containing supplementary cementitious materials (SCMs) and/or SRA; 3) modify existing drying shrinkage models mainly the ACI 209 model to predict long-term drying shrinkage for modern HPC concrete by using short-term experimental measurements; 4) complete a state-of-the-art literature review on shrinkage and cracking issues in HPC bridge decks. One of the most significant research findings is a proposed "cracking potential indicator" (CPI) that uses only the free shrinkage and mechanical properties of HPC. This was correlated to standard restrained ring tests.

Book High Performance Concrete Bridge Decks  A Fast Track Implementation Study  Volume 1  Structural Behavior

Download or read book High Performance Concrete Bridge Decks A Fast Track Implementation Study Volume 1 Structural Behavior written by Robert J. Frosch and published by Purdue University Press. This book was released on 2008-11-01 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transverse cracking of concrete bridge decks is problematic in numerous states. Cracking has been identified in the negative and positive moment regions of bridges and can appear shortly after opening the structure to live loads. To improve the service life of the bridge deck as well as decrease maintenance costs, changes to current construction practices in Indiana are being considered. A typical bridge deck was instrumented which incorporated the following: increased reinforcement amounts, decreasing reinforcement spacing, and high-performance, low-shrinkage concrete. The low shrinkage concrete was achieved using a ternary concrete mix. The objective of this research was to determine the performance, particularly in terms of transverse cracking and shrinkage, of a bridge incorporating design details meant to reduce cracking. Based on measurements from the bridge, it was determined that maximum tensile strains experienced in the concrete were not sufficient to initiate cracking. An on-site inspection was performed to confirm that cracking had not initiated. The data was analyzed and compared with the behavior of a similarly constructed bridge built with nearly identical reinforcing details, but with a more conventional concrete to evaluate the effect of the HPC. Based on this study, it was observed that full-depth transverse cracks did not occur in the structure and that the use of HPC lowered the magnitude of restrained shrinkage strains and resulting tensile stresses.

Book Investigation Into Shrinkage of High Performance Concrete Used for Iowa Bridge Decks and Overlays

Download or read book Investigation Into Shrinkage of High Performance Concrete Used for Iowa Bridge Decks and Overlays written by Kejin Wang and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance concrete (HPC) overlays have been used increasingly as an effective and economical method for bridge decks in Iowa and other states. However, due to its high cementitious material content, HPC often displays high shrinkage cracking potential. This study investigated the shrinkage behavior and cracking potential of the HPC overlay mixes commonly used in Iowa. In the study, 11 HPC overlay mixes were studied. These mixes consisted of three types of cements (Type I, I/II, and IP) and various supplementary cementitious materials (Class C fly ash, slag and metakaolin). Limestone with two different gradations was used as coarse aggregates in 10 mixes and quartzite was used in one mix. Chemical shrinkage of pastes, free drying shrinkage, autogenous shrinkage of mortar and concrete, and restrained ring shrinkage of concrete were monitored over time. Mechanical properties (such as elastic modulus and compressive and splitting tensile strength) of these concrete mixes were measured at different ages. Creep coefficients of these concrete mixes were estimated using the RILEM B3 and NCHRP Report 496 models. Cracking potential of the concrete mixes was assessed based on both ASTM C 1581 and simple stress-to-strength ratio methods. The results indicate that among the 11 mixes studied, three mixes (4, 5, and 6) cracked at the age of 15, 11, and 17 days, respectively. Autogenous shrinkage of the HPC mixes ranges from 150 to 250 microstrain and free dying shrinkage of the concrete ranges from 700 to 1,200 microstrain at 56 days. Different concrete materials (cementitious type and admixtures) and mix proportions (cementitious material content) affect concrete shrinkage in different ways. Not all mixes having a high shrinkage value cracked first. The stresses in the concrete are associated primarily with the concrete shrinkage, elastic modulus, tensile strength, and creep. However, a good relationship is found between cementitious material content and total (autogenous and free drying) shrinkage of concrete.

Book Documentation of the INDOT Experience and Construction of the Bridge Decks

Download or read book Documentation of the INDOT Experience and Construction of the Bridge Decks written by Timothy Barrett and published by . This book was released on 2015-09-01 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Indiana Department of Transportation (INDOT) constructed four bridge decks utilizing internally cured, high performance concrete (IC HPC) during the summer of 2013. These decks implement research findings from the research presented in the FHWA/IN/JTRP-2010/10 report where internal curing was proposed as one method to reduce the potential for shrinkage cracking, leading to improved durability. The objective of this research was to document the construction of the four IC HPC bridge decks that were constructed in Indiana during 2013 and quantify the properties and performance of these decks. This report contains documentation of the production and construction of IC HPC concrete for the four bridge decks in this study. In addition, samples of the IC HPC used in construction were compared with a reference high performance concrete (HPC) which did not utilize internal curing. These samples were transported to the laboratory where the mechanical properties, resistance to chloride migration, and potential for shrinkage and cracking was assessed. Using experimental results and mixture proportions, the diffusion based service life of the bridge decks was able to be estimated. Collectively, the results indicate that the IC HPC mixtures that were produced as a part of this study exhibit the potential to more than triple the service life of the typical bridge deck in Indiana while reducing the early age autogenous shrinkage by more than 80% compared to non-internally cured concretes.

Book Transverse Cracking of High Performance Concrete Bridge Decks After One Season Or Six to Eight Months

Download or read book Transverse Cracking of High Performance Concrete Bridge Decks After One Season Or Six to Eight Months written by and published by . This book was released on 2006 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cracking is a major problem with newly placed concrete decks. These decks tend to develop full depth, transverse cracks and partial depth longitudinal cracks within a few months of the concrete being placed. A literature review showed that several other states had experienced similar problems. A review of data from Ohio bridge decks showed weak correlations between deck cracking and slump, time of year when the deck was placed, shrinkage, chloride permeability and compressive strength, but there was no clear relationship between cracking and any of these properties. Data also suggested that using a coarse aggregate with an absorption> 1% may help mitigate deck cracking but will not always stop it. As part of this study, 3 bridge decks were instrumented. One was a standard class "S" concrete deck and the other two were high performance concrete. The class "S" deck showed only hairline cracking after 1 year, but transverse cracking occurred in the HPC decks. Instruments were placed in the decks to monitor strains. From the data, it appears that cracking is caused by several factors. High heat of hydration caused the plastic concrete to expand. When the concrete sets and cools, tensile stressed develop. Further tensile stresses develop through drying shrinkage. Restraining the deck against normal thermal movement contributes to additional tensile stress. Autogeneous shrinkage, where high heats of hydration cause water evaporation during hydration, and plastic shrinkage may cause more tensile stress. Recommendations for mitigating cracking include using lower cement contents, adding pozzolans and retarders, using slightly higher water/cement ratios, using larger aggregates, taking steps to limit shrinkage and eliminating restraints.

Book High Performance Concrete Bridge Decks  A Fast Track Implementation Study  Volume 2  Materials

Download or read book High Performance Concrete Bridge Decks A Fast Track Implementation Study Volume 2 Materials written by Mateusz Radlinski and published by Purdue University Press. This book was released on 2008-11-01 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this research was to examine the applicability of ternary binder systems containing ordinary portland cement (OPC), class C fly ash (FA) and silica fume (SF) for bridge deck concrete. This was accomplished in two parts, the laboratory part and a field application part. During the laboratory studies, four ternary mixtures, each containing either 20% or 30% FA and either 5% or 7% SF were subjected to four different curing regimes (air drying, 7 days curing compound application and 3 or 7 days wet burlap curing). In general, all four ternary mixtures exhibited very good water and chloride solution transport-controlling properties (resistance to chloride-ion penetration, chloride diffusivity and rate of water absorption). However, it was concluded that in order to ensure adequate strength, good freezing and thawing resistance, satisfactory resistance to salt scaling, and adequate shrinkage cracking resistance the FA content should not exceed 20%, SF content should not exceed 5% (by total mass of binder) and paste content should be kept below 24% by volume of concrete. Further, wet burlap curing for a minimum of 3 days was required to achieve satisfactory performance and to obtain a reliable assessment of in-situ compressive strength (up to 28 days) using maturity method. The second part of this research examined the performance of ternary concrete containing 20% FA and 5% SF in the pilot HPC bridge deck constructed in northern Indiana. Using maturity method developed for the purpose of this study, it was determined that the unexpectedly high RCP values of concrete placed late in the construction season were mostly attributed to low ambient temperature. Additional applications of the developed maturity method were also demonstrated. These include assessment of risk of scaling and reduction in time to corrosion initiation as a function of construction date, as well as estimation of long-term RCP values of concrete subjected to accelerated curing.

Book Field Monitoring of Shrinkage Cracking Potential in a High performance Bridge Deck

Download or read book Field Monitoring of Shrinkage Cracking Potential in a High performance Bridge Deck written by Timothy Walkowich and published by . This book was released on 2011 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade many state engineers throughout New Jersey have reported cracking on High Performance Concrete (HPC) bridge decks at early ages. The presence of cracking early in the life of a high performance deck offsets the benefits gained in using the material as the potential for corrosion begins at the onset of cracking. While many factors apply to bridge deck cracking, the shrinkage of the concrete's mass is a primary concern. Because of shear studs and boundary conditions, among other causes that act in restraining the deck itself, it is important to understand the mechanics of concrete under restraint. The AASHTO Passive Ring Test (PP 34-06) is seeing an increase in use in studies analyzing restrained shrinkage. The test simulates a concrete member of infinite length and allows researchers to study the effects of various parameters on restrained shrinkage. This thesis presents the results of a study that analyzed the ring test's ability to simulate restrained shrinkage on HPC bridge decks. The investigation incorporated an instrumented, simply supported composite bridge deck with laboratory samples taken on the day of the pour as well as a finite element analysis. The results suggest the AASHTO Passive Ring Test simulates the restrained shrinkage of simply supported HPC decks reasonably well. Fewer than 1% of all cracking present on the ring specimens saw complete penetration through the sample with 80-90% of all cracking considered to be micro cracking. While the presence of several cracks along the bridge deck itself showed no correlation with the shrinkage ring specimens, finite element analysis suggests these cracks are a result of adjacent live load. Also, the findings of this study highlight the importance of following design in the field as well as the effect of live load on staged construction of HPC bridge decks.

Book Development and Construction of Low cracking High performance Concrete  LC HPC  Bridge Decks

Download or read book Development and Construction of Low cracking High performance Concrete LC HPC Bridge Decks written by and published by . This book was released on 2009 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development and evaluation of low-cracking high-performance concrete (LC-HPC) for use in bridge decks is described based on laboratory test results and experience gained during the construction of 14 bridges. This report emphasizes the material aspects of the construction process; a companion report will provide a detailed discussion of the construction, design, and environmental factors affecting the performance of LC-HPC bridge decks. The KU Mix design methodology for determining an optimized combined gradation uses the percent retained chart and the Modified Coarseness Factor Chart. The process begins by developing an ideal gradation followed by the determination of an optimum blend of user-selected aggregates. A Microsoft® Excel workbook enhanced with Visual Basic for Applications is available to perform the optimization process at www.iri.ku.edu. The second portion of the study involves evaluating the effect of paste content, water-cement (w/c) ratio, coarse aggregate type, mineral admixture type (silica fume, slag cement, and Class F fly ash each at two levels of replacement), cement type and fineness, a shrinkage reducing admixture, and the duration of curing on the free-shrinkage characteristics of concrete mixtures in the laboratory tested in accordance with ASTM C 157. The final portion of the study presents the specifications, construction experiences, and the preliminary evaluation of 14 LC-HPC bridge decks that have been built or are planned in Kansas. The techniques used to reduce cracking in these bridge decks are presented, and the field experiences for the 18 individual LC-HPC placements completed to date are presented. The results indicate that LC-HPC decks with an optimized aggregate gradation and design w/c ratios of 0.44 and 0.45 with cement contents of 317 and 320 kg/m3 (535 and 540 lb/yd3) have more than adequate workability, finishability, and pumpability, in addition to reduced cracking. A preliminary evaluation of these decks indicates that, on average, the LC-HPC decks are performing at a level approximately equal to or exceeding the best performing monolithic decks in Kansas surveyed over the past 15 years.

Book Assessment of Cracking Potential of High performance Concrete Due to Restrained Shrinkage

Download or read book Assessment of Cracking Potential of High performance Concrete Due to Restrained Shrinkage written by and published by . This book was released on 2007 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many State Engineers have observed that a number of high-performance concrete (HPC) bridge decks exhibited cracking and sometimes soon after being poured. Although deck cracking can be attributed to various causes, in many cases, concrete shrinkage is considered the main contributor. Additionally, concrete in bridge decks is considered restrained and there is a need to examine the behavior of HPC mixes under those conditions. The AASHTO test (PP 34-06, The Passive or Restrained Ring Test) is employed to measure the cracking potential and restrained shrinkage behavior of various HPC mixes used in bridge deck projects contracted by the New Jersey Department of Transportation (NJDOT). This thesis presents the results of a study which utilized a method for directly measuring the strain development in the concrete ring using Vibrating Wire Strain Gages (VWSG). For each mix, additional tests were performed to determine the corresponding mechanical properties (e.g., elastic modulus, tensile splitting strength, compressive strength, etc.). The effect of total amount of cementitious materials and the potential of cracking for various mixes are also reported. The results of the study are used to correlate strains from restrained shrinkage tests with those from free shrinkage tests. Results show that the coarse aggregate (CA) content, the coarse/fine aggregate ratio, and cementitious content have the greatest effect on both free and restrained shrinkage. Mixes with higher cementitious content were observed to crack earlier. In general, to minimize HPC cracking potential, it is suggested that a limit on free shrinkage (450 micro strain at 56 days) be specified in bridge decks to indirectly reflect restrained shrinkage conditions. Additional limits for the total amount of coarse aggregate (1800 lb/cu yd.) and Coarse/Fine aggregate ratio (1.48) should also be considered.

Book Study on Reduction of Shrinkage Cracks in Bridge Deck Concrete

Download or read book Study on Reduction of Shrinkage Cracks in Bridge Deck Concrete written by Rajesh Anumakonda and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Shrinkage is an unavoidable property of concrete that can lead to cracking, thereby limiting the serviceability of concrete structures. Shrinkage cannot be eliminated but can be minimized. Shrinkage cracking can be a critical problem in concrete construction, especially for flat slab structures such as highway pavements, industrial slab-on-grade, for parking garages, and bridge decks. The primary objective of the research is to evaluate three practical methods to reduce shrinkage cracks in concrete for bridge deck applications. The three methods evaluated are: 1) use of optimized aggregate gradation concrete, 2) use of a new high performance concrete known as low-cracking high performance concrete (LC-HPC) and 3) the use of Fibra Shield Fibers to reduce plastic shrinkage cracking in concrete.

Book Controlling Early age Transverse Cracking in High Performance Concrete Bridge Decks

Download or read book Controlling Early age Transverse Cracking in High Performance Concrete Bridge Decks written by Eric Ying Xian Liu and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Improving Service Life of Concrete Structures Through the Use of Internal Curing

Download or read book Improving Service Life of Concrete Structures Through the Use of Internal Curing written by Timothy J. Barrett and published by . This book was released on 2015 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Indiana Department of Transportation (INDOT) commissioned the construction of six bridge decks utilizing a new class of internally cured high performance concrete (IC HPC). The first four bridge decks were constructed in the summer of 2013, while the fifth was built in November of 2014 and the sixth is planned for the summer of 2015. These decks implement research findings presented in the FHWA/IN/JTRP-2010/10 report (Schlitter, Henkensiefken, et al. 2010) where internal curing was proposed as one method to reduce the potential for shrinkage cracking, leading to improved durability. In addition, the use of higher performance concrete mixtures and a new specification composed of prescriptive and performance based measures was implemented with the intention of extending the service life of the bridge decks. The objectives of this thesis are to provide documentation of the construction and performance of the IC HPC bridge decks cast in Indiana and provide a viable, practice-ready method for the assessment of the potential durability of these concretes. In fulfillment of these objectives, samples of the IC HPC used in construction were compared to a reference high performance concrete (HPC) which did not utilize internal curing and was made by the same producer with the same constituent materials. The samples collected in the field were transported to the laboratory where the mechanical performance, resistance to chloride ingress, and potential for shrinkage and cracking was assessed. Using experimental results and mixture proportions, the diffusion based service life of the bridge decks was able to be estimated. The construction process was documented for first four bridge decks made using internal cured high performance concrete (IC HPC). These concretes were able to be designed, batched, and placed and are now in service. While avoidable issues were observed during batching construction related to corrections of batching water, batching tolerances and fluctuations in air content (which apply to any concrete), the IC HPC was able to be batched and placed using slight modifications to conventional methods. The production of the IC HPC mixtures was implemented using a mixed specification using prescriptive and performance based measures representing an improvement on previous specifications which did not specifically have provisions that consider durability. To aid in the implementation of internal curing in the field, a new quality control technique for lightweight aggregate utilizing a centrifuge has been implemented is now standardized in Indiana Testing Method 222 (Miller, Barrett, et al. 2014). The results of laboratory testing indicate that the compressive strength, modulus of elasticity, and tensile strength of the IC HPC mixtures was not substantially different than the HPC mixtures and as such current codified equations are able to be used to predict the modulus of elasticity and tensile strength if the compressive strength is known. The diffusion of chlorides in these concretes was assessed, where it was shown that each of the mixtures tested had a charge passed in the rapid chloride permeability test of less than 1500 C at 91 days (AASHTO T277-07 2007); additional testing provided equivalent results when performing the Nordtest (NT Build 492 1999), Stadium migration test , or electrical resistivity test. Using experimental results which determined the chloride diffusion and permeability, the diffusion based service life of the IC HPC bridge decks was estimated to be between approximately 60 to 90 years, compared to approximately 18 years for the conventional class C bridge deck concrete used in Indiana. The susceptibility to early age shrinkage and cracking was evaluated where it was shown that IC HPC concretes exhibited a reduction in early age shrinkage of 70 to 90%, resulting in a reduction in residual stresses of 80% or more while reducing thermally induced stress by up to 55% when compared to HPC mixtures. Collectively, these results indicate that the IC HPC mixtures that were produced as a part of this study exhibit the potential of for substantially increased service life while markedly reducing the potential for early age cracking. The second phase of this thesis investigated the role of initial sample conditioning and the effect of changes in degree of saturation on the measured electrical resistivity, where a new function was developed to describe this relationship in air entrained concretes. The consistency and variability in the determination of the chloride diffusion coefficient was investigated through standardized testing methods, where it was shown that the coefficient of variation associated with the accelerated tests was approximately 15% or less and are dependent on the test. Chloride profile measurements made on cores taken from samples which were exposed with a known deicing solution and the temperature fluctuations of West Lafayette, Indiana indicated that on average, the coefficient of variation for determining the apparent chloride diffusion coefficient under is 30% or less. In addition, the use of resistivity measurements on sealed samples was used to evaluate the variability of the concrete produced throughout the construction of the fifth IC HPC bridge deck while comparisons of the samples from the first four bridge decks produced in the laboratory and in the field were also made. The results indicated that the coefficient of variation associated with the resistivity measurements made on the fifth bridge deck was less than 5%, while experimental results indicated that industrial production consistently results in lower performance as measured by the resistivity test when compared to laboratory production. In this study it was also shown that measurements of mechanical properties are not indicative of the potential durability of the concrete. The conclusions of this thesis and the findings presented in the FHWA/IN/JTRP-2010/10 report (Schlitter, Henkensiefken, et al. 2010) and the CDOT-2014-3 report (Jones et al. 2014) indicate that internal curing is a practice-ready, engineered solution that may lead to the production of higher performance concretes which have a reduced potential for cracking. To aid in the implementation of internal curing in practice, spreadsheets which automate calculations necessary for quality control for lightweight aggregates, mixture proportioning, and moisture adjustments have been developed by Miller (2014) and have been made available with the report documenting the construction of the first four bridge decks (Barrett et al. 2015). This thesis also provided the framework for a durability based design approach using sealed electrical resistivity measurements which may be implemented in practice. This method has been shown to be a viable way to rapidly evaluate the chloride diffusion coefficient of concrete and is appropriate for testing large numbers of samples during construction. It is recommended that the approach outlined in this work be implemented in performance based specifications in lieu of other accelerated testing methods which define the performance of the concrete based on the result of that test. Finally, it should be emphasized that the implementation of technologies such as those that are presented in this thesis alone does not guarantee higher performance, as the production of such concrete requires a degree of technical competence in design, production, and construction of concrete materials. As is the case with the production of any concrete, internally cured or not, performance will be directly tied to the careful accounting of water, be it on the surface of aggregates, in the mixing drum after washing, or elsewhere. Special attention should be paid to the proper operation of batching systems, while placement techniques should be reviewed to minimize unwanted effects, and proper finishing and curing techniques must always be practiced. Only after performing the basics of concrete production properly will the full benefits of internal curing be actualized.

Book Development of High performance Concrete Mixtures for Durable Bridge Decks in Montana Using Locally Available Materials

Download or read book Development of High performance Concrete Mixtures for Durable Bridge Decks in Montana Using Locally Available Materials written by John Steven Lawler and published by . This book was released on 2005 with total page 51 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Montana Department of Transportation (MDT) is performing research to develop a cost-effective, indigenous highperformance concrete (HPC) for use in bridge deck applications. The investigation was divided into two tasks: 1) identification of the optimum cementitious matrix for the HPC and 2) evaluation of the performance of this matrix in combination with aggregates readily available in Montana. The work focused on the use of binary, ternary, and quaternary blends of portland cement with fly ash (Class C and F), slag, calcined clay, metakaolin, and silica fume, in combination with Yellowstone River and Western Montana aggregate sources. Testing included plastic properties, setting characteristics, air-void system parameters, electrical conductivity, strength, chloride diffusion, freezing and thawing resistance, scaling resistance, and drying shrinkage. The paper discusses the process required to test and implement HPC specifically for bridge deck applications and presents the test results for this MDT study. The supplementary cementitious material combinations that produced the best performance were silica fume alone, silica fume and slag, Class F fly ash, silica fume and slag-blended cement, and silica fume and calcined clay-blended cement. The importance of raw material testing and the practical reproducibility of the concrete mixture are also considered.

Book High performance high strength Lightweight Concrete for Bridge Girders and Decks

Download or read book High performance high strength Lightweight Concrete for Bridge Girders and Decks written by Thomas E. Cousins and published by Transportation Research Board. This book was released on 2013 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: "TRB's National Cooperative Highway Research Program (NCHRP) Report 733: High-Performance/High-Strength Lightweight Concrete for Bridge Girders and Decks presents proposed changes to the American Association of State Highway and Transportation Officials' Load and Resistance Factor Design (LRFD) bridge design and construction specifications to address the use of lightweight concrete in bridge girders and decks. The proposed specifications are designed to help highway agencies evaluate between comparable designs of lightweight and normal weight concrete bridge elements so that an agency's ultimate selection will yield the greatest economic benefit. The attachments contained in the research agency's final report provide elaborations and detail on several aspects of the research. Attachments A and B provide proposed changes to AASHTO LRFD bridge design and bridge construction specifications, respectively; these are included in the print and PDF version of the report. Attachments C through R are available for download below. Attachments C, D, and E contain a detailed literature review, survey results, and a literature summary and the approved work plan, respectively. Attachment C; Attachment D ; Attachment E; Attachments F through M provide details of the experimental program that were not able to be included in the body of this report. Attachment F; Attachment G; Attachment H; Attachment I; Attachment J; Attachment K; Attachment L; Attachment M. Attachments N through Q present design examples of bridges containing lightweight concrete and details of the parametric study. Attachment N; Attachment O; Attachment P; Attachment Q. Attachment R is a detailed reference list."--Publication information.

Book High performance concrete bridge deck investigation

Download or read book High performance concrete bridge deck investigation written by Benjamin A. Graybeal and published by . This book was released on 2009 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document is a technical summary of the unpublished Federal Highway Administration report, High Performance Concrete Bridge Deck Investigation, available only through the National Technical Information Service (NTIS). NTIS Accession No. of the report covered in this TechBrief: PB2009 115497. This TechBrief provides a summary of an investigation that assessed the performance of high performance concrete (HPC) bridge decks. HPC is a concrete designed to meet a performance specification. Many definitions of HPC have been proposed over the past 15 to 20 years; one to note is the definition proposed by Goodspeed and later expanded by Russell and Ozyildirim that offers a series of strength and durability related performance characteristics. It recommends that the desired performance of the concrete should be considered and that the performance characteristics should then be set accordingly. Example performance characteristics toward which concrete properties may be focused include chloride penetration, shrinkage, compressive strength, and freeze/ thaw deterioration resistance.