EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Shortest Paths for Sub Riemannian Metrics on Rank Two Distributions

Download or read book Shortest Paths for Sub Riemannian Metrics on Rank Two Distributions written by Wensheng Liu and published by American Mathematical Soc.. This book was released on 1995 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: A sub-Riemannian manifold ([italic capitals]M, E, G) consists of a finite-dimensional manifold [italic capital]M, a rank-two bracket generating distribution [italic capital]E on [italic capital]M, and a Riemannian metric [italic capital]G on [italic capital]E. All length-minimizing arcs on ([italic capitals]M, E, G) are either normal extremals or abnormal extremals. Normal extremals are locally optimal, i.e., every sufficiently short piece of such an extremal is a minimizer. The question whether every length-minimizer is a normal extremal was recently settled by R. G. Montgomery, who exhibited a counterexample. The present work proves that regular abnormal extremals are locally optimal, and, in the case that [italic capital]E satisfies a mild additional restriction, the abnormal minimizers are ubiquitous rather than exceptional. All the topics of this research report (historical notes, examples, abnormal extremals, Hamiltonians, nonholonomic distributions, sub-Riemannian distance, the relations between minimality and extremality, regular abnormal extremals, local optimality of regular abnormal extremals, etc.) are presented in a very clear and effective way.

Book Shortest Paths for Sub Riemannian Metrics on Rank two Distributions

Download or read book Shortest Paths for Sub Riemannian Metrics on Rank two Distributions written by Wensheng Liu and published by . This book was released on 1995 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sub Riemannian Geometry

Download or read book Sub Riemannian Geometry written by Andre Bellaiche and published by Birkhäuser. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: control theory classical mechanics Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) diffusion on manifolds analysis of hypoelliptic operators Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: Andr Bellache: The tangent space in sub-Riemannian geometry Mikhael Gromov: Carnot-Carathodory spaces seen from within Richard Montgomery: Survey of singular geodesics Hctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers Jean-Michel Coron: Stabilization of controllable systems.

Book Sub Riemannian Geometry

Download or read book Sub Riemannian Geometry written by Ovidiu Calin and published by Cambridge University Press. This book was released on 2009-04-20 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive text and reference on sub-Riemannian and Heisenberg manifolds using a novel and robust variational approach.

Book Geometric Control Theory and Sub Riemannian Geometry

Download or read book Geometric Control Theory and Sub Riemannian Geometry written by Gianna Stefani and published by Springer. This book was released on 2014-06-05 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Book A Tour of Subriemannian Geometries  Their Geodesics and Applications

Download or read book A Tour of Subriemannian Geometries Their Geodesics and Applications written by Richard Montgomery and published by American Mathematical Soc.. This book was released on 2002 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subriemannian geometries can be viewed as limits of Riemannian geometries. They arise naturally in many areas of pure (algebra, geometry, analysis) and applied (mechanics, control theory, mathematical physics) mathematics, as well as in applications (e.g., robotics). This book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book are an elementary exposition of Gromov's idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants of distributions. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry. The reader is assumed to have an introductory knowledge of differential geometry. This book that also has a chapter devoted to open problems can serve as a good introduction to this new, exciting area of mathematics.

Book A Comprehensive Introduction to Sub Riemannian Geometry

Download or read book A Comprehensive Introduction to Sub Riemannian Geometry written by Andrei Agrachev and published by Cambridge University Press. This book was released on 2019-10-31 with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive and self-contained introduction to sub-Riemannian geometry and its applications. For graduate students and researchers.

Book Contemporary Trends in Nonlinear Geometric Control Theory and Its Applications

Download or read book Contemporary Trends in Nonlinear Geometric Control Theory and Its Applications written by A. Anzaldo-Meneses and published by World Scientific. This book was released on 2002 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concerns contemporary trends in nonlinear geometric control theory and its applications.

Book Dynamics  Bifurcations and Control

Download or read book Dynamics Bifurcations and Control written by Fritz Colonius and published by Springer. This book was released on 2003-07-01 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume originates from the Third Nonlinear Control Workshop "- namics, Bifurcations and Control", held in Kloster Irsee, April 1-3 2001. As the preceding workshops held in Paris (2000) and in Ghent (1999), it was organized within the framework of Nonlinear Control Network funded by the European Union (http://www.supelec.fr/lss/NCN). The papers in this volume center around those control problems where phenomena and methods from dynamical systems theory play a dominant role. Despite the large variety of techniques and methods present in the c- tributions, a rough subdivision can be given into three areas: Bifurcation problems, stabilization and robustness, and global dynamics of control s- tems. A large part of the fascination in nonlinear control stems from the fact that is deeply rooted in engineering and mathematics alike. The contributions to this volume reflect this double nature of nonlinear control. We would like to take this opportunity to thank all the contributors and the referees for their careful work. Furthermore, it is our pleasure to thank Franchise Lamnabhi-Lagarrigue, the coordinator of our network, for her s- port in organizing the workshop and the proceedings and for the tremendous efforts she puts into this network bringing the cooperation between the d- ferent groups to a new level. In particular, the exchange and the active p- ticipation of young scientists, also reflected in the Pedagogical Schools within the Network, is an asset for the field of nonlinear control.

Book Two Classes of Riemannian Manifolds Whose Geodesic Flows Are Integrable

Download or read book Two Classes of Riemannian Manifolds Whose Geodesic Flows Are Integrable written by Kazuyoshi Kiyohara and published by American Mathematical Soc.. This book was released on 1997 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two classes of manifolds whose geodesic flows are integrable are defined, and their global structures are investigated. They are called Liouville manifolds and Kahler-Liouville manifolds respectively. In each case, the author finds several invariants with which they are partly classified. The classification indicates, in particular, that these classes contain many new examples of manifolds with integrable geodesic flow.

Book An Arithmetic Riemann Roch Theorem for Singular Arithmetic Surfaces

Download or read book An Arithmetic Riemann Roch Theorem for Singular Arithmetic Surfaces written by Wayne Aitken and published by American Mathematical Soc.. This book was released on 1996 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: The following gives a development of Arakelov theory general enough to handle not only regular arithmetic surfaces but also a large class of arithmetic surfaces whose generic fiber has singularities. This development culminates in an arithmetic Riemann-Roch theorem for such arithmetic surfaces. The first part of the memoir gives a treatment of Deligne's functorial intersection theory, and the second develops a class of intersection functions for singular curves which behaves analogously to the canonical Green's functions introduced by Arakelov for smooth curves.

Book Geometric Measure Theory and Real Analysis

Download or read book Geometric Measure Theory and Real Analysis written by Luigi Ambrosio and published by Springer. This book was released on 2015-04-09 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone. The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.

Book Generalized Minkowski Content  Spectrum of Fractal Drums  Fractal Strings and the Riemann Zeta Functions

Download or read book Generalized Minkowski Content Spectrum of Fractal Drums Fractal Strings and the Riemann Zeta Functions written by Christina Q. He and published by American Mathematical Soc.. This book was released on 1997 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This memoir provides a detailed study of the effect of non power-like irregularities of (the geometry of) the fractal boundary on the spectrum of "fractal drums" (and especially of "fractal strings"). In this work, the authors extend previous results in this area by using the notionof generalized Minkowski content which is defined through some suitable "gauge functions" other than power functions. (This content is used to measure the irregularity (or "fractality") of the boundary of an open set in R]n by evaluating the volume of its small tubular neighborhoods). In the situation when the power function is not the natural "gauge function", this enables the authors to obtain more precise estimates, with a broader potential range of applications than in previous papers of the second author and his collaborators. This text will also be of interest to those working in mathematical physics.

Book Analysis and Mathematical Physics

Download or read book Analysis and Mathematical Physics written by Björn Gustafsson and published by Springer Science & Business Media. This book was released on 2009-10-02 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our knowledge of objects of complex and potential analysis has been enhanced recently by ideas and constructions of theoretical and mathematical physics, such as quantum field theory, nonlinear hydrodynamics, material science. These are some of the themes of this refereed collection of papers, which grew out of the first conference of the European Science Foundation Networking Programme 'Harmonic and Complex Analysis and Applications' held in Norway 2007.

Book Quantization  PDEs  and Geometry

Download or read book Quantization PDEs and Geometry written by Dorothea Bahns and published by Birkhäuser. This book was released on 2016-02-11 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents four survey articles on different topics in mathematical analysis that are closely linked to concepts and applications in physics. Specifically, it discusses global aspects of elliptic PDEs, Berezin-Toeplitz quantization, the stability of solitary waves, and sub-Riemannian geometry. The contributions are based on lectures given by distinguished experts at a summer school in Göttingen. The authors explain fundamental concepts and ideas and present them clearly. Starting from basic notions, these course notes take the reader to the point of current research, highlighting new challenges and addressing unsolved problems at the interface between mathematics and physics. All contributions are of interest to researchers in the respective fields, but they are also accessible to graduate students.

Book Integrable Systems and Riemann Surfaces of Infinite Genus

Download or read book Integrable Systems and Riemann Surfaces of Infinite Genus written by Martin Ulrich Schmidt and published by American Mathematical Soc.. This book was released on 1996 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This memoir develops the spectral theory of the Lax operators of nonlinear Schrödinger-like partial differential equations with periodic boundary conditions. Their special curves, i.e., the common spectrum with the periodic shifts, are generically Riemann surfaces of infinite genus. The points corresponding to infinite energy are added. The resulting spaces are no longer Riemann surfaces in the usual sense, but they are quite similar to compact Riemann surfaces.

Book The Finite Irreducible Linear 2 Groups of Degree 4

Download or read book The Finite Irreducible Linear 2 Groups of Degree 4 written by Dane Laurence Flannery and published by American Mathematical Soc.. This book was released on 1997 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: This memoir contains a complete classification of the finite irreducible 2-subgroups of GL(4, C). Specifically, the author provides a parametrized list of representatives for the conjugacy classes of such groups, where each representative is defined by generating a set of monomial matrices. The problem is treated by a variety of techniques, including: elementary character theory; a method for describing Hasse diagrams of submodule lattices; and calculation of 2-cohomology by means of the Lyndon-Hochschild-Serre spectral sequence. Related questions concerning isomorphism between the listed groups and Schur indices of their defining characters are also considered