Download or read book Turbulence and Shell Models written by Peter D. Ditlevsen and published by Cambridge University Press. This book was released on 2010-10-28 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence is a huge subject of ongoing research. This book bridges the modern development in dynamical systems theory and the theory of fully developed turbulence. Many solved and unsolved problems in turbulence have equivalencies in simple dynamical models, which are much easier to handle analytically and numerically. This book gives a modern view of the subject by first giving the essentials of the theory of turbulence before moving on to shell models. These show much of the same complex behaviour as fluid turbulence, but are much easier to handle analytically and numerically. Any necessary maths is explained and self-contained, making this book ideal for advanced undergraduates and graduate students, as well as researchers and professionals, wanting to understand the basics of fully developed turbulence.
Download or read book Nonlinear MHD Waves and Turbulence written by Thierry Passot and published by Springer. This book was released on 2008-01-11 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: The workshop "Nonhnear MHD Waves and Turbulence" was held at the - servatoire de Nice, December 1-4, 1998 and brought together an international group of experts in plasma physics, fluid dynamics and applied mathematics. The aim of the meeting was to survey the current knowledge on two main topics: (i) propagation of plasma waves (like Alfven, whistler or ion-acoustic waves), their instabilities and the development of a nonlinear dynamics lea ding to solitonic structures, wave collapse or weak turbulence; (ii) turbulence in magnetohydrodynamic flows and its reduced description in the presence of a strong ambient magnetic fleld. As is well known, both aspects play an important role in various geophysical or astrophysical media such as the - gnetospheres of planets, the heliosphere, the solar wind, the solar corona, the interplanetary and interstellar media, etc. This volume, which includes expanded versions of oral contributions pre sented at this meeting, should be of interest for a large community of resear chers in space plasmas and nonlinear sciences. Special effort was made to put the new results into perspective and to provide a detailed literature review. A main motivation was the attempt to relate more closely the theoretical un derstanding of MHD waves and turbulence (both weak and strong) with the most recent observations in space plasmas. Some papers also bring interesting new insights into the evolution of hydrodynamic or magnetohydrodynamic structures, based on systematic asymptotic methods.
Download or read book Introduction to Modern Magnetohydrodynamics written by Sébastien Galtier and published by Cambridge University Press. This book was released on 2016-10-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text on magnetohydrodynamics for advanced students, covering its broad range of applications in nature and in the laboratory.
Download or read book Turbulence in Space Plasmas written by Loukas Vlahos and published by Springer Science & Business Media. This book was released on 2009-06-16 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the years, many leading European graduate schools in the field of astrophysical and space plasmas have operated within the framework of the research network, "Theory, Observations, and Simulations in Turbulence in Space Plasmas." This text is a set of lectures and tutorial reviews culled from the relevant work of all those schools. It emphasizes applications on solar coronae, solar flares, and the solar wind. In bridging the gap between standard textbook material and state-of-the-art research, this text offers a broad flavor to postgraduate and postdoctoral students just coming to the field. And because of its unique mix, it will also be useful to lecturers looking for advanced teaching material for their seminars and courses.
Download or read book Collisionless Plasmas in Astrophysics written by Gérard Belmont and published by John Wiley & Sons. This book was released on 2013-09-10 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations are given in both space physics and astrophysics.
Download or read book IUTAM Symposium on Geometry and Statistics of Turbulence written by T. Kambe and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the papers presented at the IUTAM Symposium on Geometry and Statistics of Turbulence, held in November 1999, at the Shonan International Village Center, Hayama (Kanagawa-ken), Japan. The Symposium was proposed in 1996, aiming at organizing concen trated discussions on current understanding of fluid turbulence with empha sis on the statistics and the underlying geometric structures. The decision of the General Assembly of International Union of Theoretical and Applied Mechanics (IUTAM) to accept the proposal was greeted with enthusiasm. Turbulence is often characterized as having the properties of mixing, inter mittency, non-Gaussian statistics, and so on. Interest is growing recently in how these properties are related to formation and evolution of struc tures. Note that the intermittency is meant for passive scalars as well as for turbulence velocity or rate of dissipation. There were eighty-eight participants in the Symposium. They came from thirteen countries, and fifty-seven papers were presented. The presenta tions comprised a wide variety of fundamental subjects of mathematics, statistical analyses, physical models as well as engineering applications. Among the subjects discussed are (a) Degree of self-similarity in cascade, (b) Fine-scale structures and degree of Markovian property in turbulence, (c) Dynamics of vorticity and rates of strain, (d) Statistics associated with vortex structures, (e) Topology, structures and statistics of passive scalar advection, (f) Partial differential equations governing PDFs of velocity in crements, (g) Thermal turbulences, (h) Channel and pipe flow turbulences, and others.
Download or read book Advances in Turbulence XI written by J. M. L. M. Palma and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the communications presented at the ETC 11, the EUROMECH European Turbulence conference held in 2007 in Porto. The scientific committee has chosen the contributions out of the following topics: Acoustics of turbulent flows; Atmospheric turbulence; Control of turbulent flows; Geophysical and astrophysical turbulence; Instability and transition; Intermittency and scaling; Large eddy simulation and related techniques; MHD turbulence; Reacting and compressible turbulence; Transport and mixing; Turbulence in multiphase and non-Newtonian flows; Vortex dynamics and structure formation; Wall bounded flows.
Download or read book Energy Transfers in Fluid Flows written by Mahendra K. Verma and published by Cambridge University Press. This book was released on 2019-05-23 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date comprehensive text useful for graduate students and academic researchers in the field of energy transfers in fluid flows. The initial part of the text covers discussion on energy transfer formalism in hydrodynamics and the latter part covers applications including passive scalar, buoyancy driven flows, magnetohydrodynamic (MHD), dynamo, rotating flows and compressible flows. Energy transfers among large-scale modes play a critical role in nonlinear instabilities and pattern formation and is discussed comprehensively in the chapter on buoyancy-driven flows. It derives formulae to compute Kolmogorov's energy flux, shell-to-shell energy transfers and locality. The book discusses the concept of energy transfer formalism which helps in calculating anisotropic turbulence.
Download or read book Turbulence in the Solar Wind written by Roberto Bruno and published by Springer. This book was released on 2016-10-07 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom’s law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.
Download or read book Issues in General Physics Research 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 13957 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in General Physics Research / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about General Physics Research. The editors have built Issues in General Physics Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General Physics Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General Physics Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Advances in Turbulence XII written by Bruno Eckhardt and published by Springer Science & Business Media. This book was released on 2010-03-17 with total page 973 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the communications presented at the EUROMECH European Turbulence Conference ETC12, held in Marburg in September 2009. The topics covered by the meeting include: Acoustics of turbulent flows, Atmospheric turbulence, Control of turbulent flows, Geophysical and astrophysical turbulence, Instability and transition, Intermittency and scaling, Large eddy simulation and related techniques, Lagrangian aspects, MHD turbulence, Reacting and compressible turbulence, Transport and mixing, Turbulence in multiphase and non-Newtonian flows, Vortex dynamics and structure, formation, Wall bounded flows.
Download or read book Treatise on Geophysics written by and published by Elsevier. This book was released on 2015-04-17 with total page 5604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Treatise on Geophysics, Second Edition, is a comprehensive and in-depth study of the physics of the Earth beyond what any geophysics text has provided previously. Thoroughly revised and updated, it provides fundamental and state-of-the-art discussion of all aspects of geophysics. A highlight of the second edition is a new volume on Near Surface Geophysics that discusses the role of geophysics in the exploitation and conservation of natural resources and the assessment of degradation of natural systems by pollution. Additional features include new material in the Planets and Moon, Mantle Dynamics, Core Dynamics, Crustal and Lithosphere Dynamics, Evolution of the Earth, and Geodesy volumes. New material is also presented on the uses of Earth gravity measurements. This title is essential for professionals, researchers, professors, and advanced undergraduate and graduate students in the fields of Geophysics and Earth system science. Comprehensive and detailed coverage of all aspects of geophysics Fundamental and state-of-the-art discussions of all research topics Integration of topics into a coherent whole
Download or read book Interdisciplinary Aspects of Turbulence written by Wolfgang Hillebrandt and published by Springer Science & Business Media. This book was released on 2008-10-25 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by experts from geophysics, astrophysics and engineering, this unique book on the interdisciplinary aspects of turbulence offers recent advances in the field and covers everything from the very nature of turbulence to some practical applications.
Download or read book Physical Review written by and published by . This book was released on 2000-02 with total page 1476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.
Download or read book Physics of Wave Turbulence written by Sébastien Galtier and published by Cambridge University Press. This book was released on 2022-12-31 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorously comprehensive and interdisciplinary text on wave turbulence, for graduate students and researchers in physics-related fields.
Download or read book Physics Of Buoyant Flows From Instabilities To Turbulence written by Mahendra Kumar Verma and published by World Scientific. This book was released on 2018-05-30 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gravity pervades the whole universe; hence buoyancy drives fluids everywhere including those in the atmospheres and interiors of planets and stars. Prime examples of such flows are mantle convection, atmospheric flows, solar convection, dynamo process, heat exchangers, airships and hot air balloons. In this book we present fundamentals and applications of thermal convection and stratified flows.Buoyancy brings in extremely rich phenomena including waves and instabilities, patterns, chaos, and turbulence. In this book we present these topics in a systematic manner. First we present a unified treatment of linear theory that yields waves and thermal instability for stably and unstably-stratified flows respectively. We extend this analysis to include rotation and magnetic field. We also describe nonlinear saturation and pattern formation in Rayleigh-Bénard convection.The second half of the book is dedicated to buoyancy-driven turbulence, both in stably-stratified flow and in thermal convection. We describe the spectral theory including energy flux and show that the thermally-driven turbulence is similar to hydrodynamic turbulence. We also describe large-scale quantities like Reynolds and Nusselt numbers, flow anisotropy, and the dynamics of flow structures, namely flow reversals. Thus, this book presents all the major aspects of the buoyancy-driven flows in a coherent manner that would appeal to advanced graduate students and researchers.
Download or read book Advances in Wave Turbulence written by Victor Shrira and published by World Scientific. This book was released on 2013 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave or weak turbulence is a branch of science concerned with the evolution of random wave fields of all kinds and on all scales, from waves in galaxies to capillary waves on water surface, from waves in nonlinear optics to quantum fluids. In spite of the enormous diversity of wave fields in nature, there is a common conceptual and mathematical core which allows us to describe the processes of random wave interactions within the same conceptual paradigm, and in the same language. The development of this core and its links with the applications is the essence of wave turbulence science (WT) which is an established integral part of nonlinear science.