EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Intermediate Algebra 2e

    Book Details:
  • Author : Lynn Marecek
  • Publisher :
  • Release : 2020-05-06
  • ISBN : 9781951693848
  • Pages : pages

Download or read book Intermediate Algebra 2e written by Lynn Marecek and published by . This book was released on 2020-05-06 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Set Theory for Beginners

    Book Details:
  • Author : Steve Warner
  • Publisher :
  • Release : 2019-02-18
  • ISBN : 9780999811764
  • Pages : pages

Download or read book Set Theory for Beginners written by Steve Warner and published by . This book was released on 2019-02-18 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Set Theory for BeginnersSet Theory for Beginners consists of a series of basic to intermediate lessons in set theory. In addition, all the proofwriting skills that are essential for advanced study in mathematics are covered and reviewed extensively. Set Theory for Beginners is perfect for professors teaching an undergraduate course or basic graduate course in set theory high school teachers working with advanced math students students wishing to see the type of mathematics they would be exposed to as a math major. The material in this pure math book includes: 16 lessons consisting of basic to intermediate topics in set theory and mathematical logic. A problem set after each lesson arranged by difficulty level. A complete solution guide is included as a downloadable PDF file. Set Theory Book Table Of Contents (Selected) Here's a selection from the table of contents: Introduction Lesson 1 - Sets Lesson 2 - Subsets Lesson 3 - Operations on Sets Lesson 4 - Relations Lesson 5 - Equivalence Relations and Partitions Lesson 6 - Functions Lesson 7 - Equinumerosity Lesson 8 - Induction and Recursion on N Lesson 9 - Propositional Logic Lesson 10 - First-order Logic Lesson 11 - Axiomatic Set Theory Lesson 12 - Ordinals Lesson 13 - Cardinals Lesson 14 - Martin's Axiom Lesson 15 - The Field of Real Numbers Lesson 16 - Clubs and Stationary Sets

Book An Introduction to Analytic Functions

Download or read book An Introduction to Analytic Functions written by John Sheridan Mac Nerney and published by Springer Nature. This book was released on 2020-05-30 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: When first published in 1959, this book was the basis of a two-semester course in complex analysis for upper undergraduate and graduate students. J. S. Mac Nerney was a proponent of the Socratic, or “do-it-yourself” method of learning mathematics, in which students are encouraged to engage in mathematical problem solving, including theorems at every level which are often regarded as “too difficult” for students to prove for themselves. Accordingly, Mac Nerney provides no proofs. What he does instead is to compose and arrange the investigation in his own unique style, so that a contextual proof is always available to the persistent student who enjoys a challenge. The central idea is to empower students by allowing them to discover and rely on their own mathematical abilities. This text may be used in a variety of settings, including: the usual classroom or seminar, but with the teacher acting mainly as a moderator while the students present their discoveries, a small-group setting in which the students present their discoveries to each other, and independent study. The Editors, William E. Kaufman (who was Mac Nerney’s last PhD student) and Ryan C. Schwiebert, have composed the original typed Work into LaTeX ; they have updated the notation, terminology, and some of the prose for modern usage, but the organization of content has been strictly preserved. About this Book, some new exercises, and an index have also been added.

Book Set Theory for Pre Beginners

Download or read book Set Theory for Pre Beginners written by Steve Warner and published by . This book was released on 2019-12-28 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Set Theory for Pre-BeginnersSet Theory for Pre-Beginners consists of a series of lessons in set theory. The 8 lessons in this book cover elementary material from this subject. A "pre-beginner" is a math student that is ready to start learning some more advanced mathematics, but is not quite ready to dive into proofwriting. Set Theory for Pre-Beginners is perfect for students wishing to begin learning advanced mathematics, but that are not quite ready to start writing proofs. high school teachers that want to expose their students to the ideas of advanced mathematics without getting into mathematical rigor. professors that wish to introduce higher mathematics to non-stem majors. The material in this set theory book includes: 8 lessons in 8 subject areas. Examples and exercises throughout each lesson. A problem set after each lesson arranged by difficulty level. A complete solution guide is included as a downloadable PDF file. Pure Math Pre-Beginner Book Table Of Contents (Selected) Here's a selection from the table of contents: Introduction Lesson 1 - Sets and Subsets Lesson 2 - Operations on Sets Lesson 3 - Relations Lesson 4 - Equivalence Relations and Partitions Lesson 5 - Functions Lesson 6 - Equinumerosity Lesson 7 - Logic and Axioms Lesson 8 - Ordinals and Cardinals

Book Introduction To Abstract Algebra  An  Sets  Groups  Rings  And Fields

Download or read book Introduction To Abstract Algebra An Sets Groups Rings And Fields written by Steven Howard Weintraub and published by World Scientific. This book was released on 2022-05-25 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a textbook for a semester-long or year-long introductory course in abstract algebra at the upper undergraduate or beginning graduate level.It treats set theory, group theory, ring and ideal theory, and field theory (including Galois theory), and culminates with a treatment of Dedekind rings, including rings of algebraic integers.In addition to treating standard topics, it contains material not often dealt with in books at this level. It provides a fresh perspective on the subjects it covers, with, in particular, distinctive treatments of factorization theory in integral domains and of Galois theory.As an introduction, it presupposes no prior knowledge of abstract algebra, but provides a well-motivated, clear, and rigorous treatment of the subject, illustrated by many examples. Written with an eye toward number theory, it contains numerous applications to number theory (including proofs of Fermat's theorem on sums of two squares and of the Law of Quadratic Reciprocity) and serves as an excellent basis for further study in algebra in general and number theory in particular.Each of its chapters concludes with a variety of exercises ranging from the straightforward to the challenging in order to reinforce students' knowledge of the subject. Some of these are particular examples that illustrate the theory while others are general results that develop the theory further.

Book Introduction To Set Theory

Download or read book Introduction To Set Theory written by A. K. Sharma and published by Discovery Publishing House. This book was released on 2010 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book Introduction to Set Theory is very important in the field of modern algebra. It is very important to study this book to study modern mathematics. This book contain preliminary Notation, Sets, Subsets, Mapping Function and Relation. This book is useful to the students of under graduate, post graduate students and the candidate appearing in various competitions like pre Engineering/I.A.S/ P.C.S. etc. Contents: Preliminary Notation, Relations, Product or Composite of Mapping, Mapping or Functions

Book Introduction to Set Theory  Revised and Expanded

Download or read book Introduction to Set Theory Revised and Expanded written by Karel Hrbacek and published by CRC Press. This book was released on 2017-12-19 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly revised, updated, expanded, and reorganized to serve as a primary text for mathematics courses, Introduction to Set Theory, Third Edition covers the basics: relations, functions, orderings, finite, countable, and uncountable sets, and cardinal and ordinal numbers. It also provides five additional self-contained chapters, consolidates the material on real numbers into a single updated chapter affording flexibility in course design, supplies end-of-section problems, with hints, of varying degrees of difficulty, includes new material on normal forms and Goodstein sequences, and adds important recent ideas including filters, ultrafilters, closed unbounded and stationary sets, and partitions.

Book Sets  Relations  Functions

Download or read book Sets Relations Functions written by Ivo Düntsch and published by . This book was released on 2000 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematics in Computing

Download or read book Mathematics in Computing written by Gerard O’Regan and published by Springer Nature. This book was released on 2020-01-10 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This illuminating textbook provides a concise review of the core concepts in mathematics essential to computer scientists. Emphasis is placed on the practical computing applications enabled by seemingly abstract mathematical ideas, presented within their historical context. The text spans a broad selection of key topics, ranging from the use of finite field theory to correct code and the role of number theory in cryptography, to the value of graph theory when modelling networks and the importance of formal methods for safety critical systems. This fully updated new edition has been expanded with a more comprehensive treatment of algorithms, logic, automata theory, model checking, software reliability and dependability, algebra, sequences and series, and mathematical induction. Topics and features: includes numerous pedagogical features, such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; describes the historical contributions of such prominent figures as Leibniz, Babbage, Boole, and von Neumann; introduces the fundamental mathematical concepts of sets, relations and functions, along with the basics of number theory, algebra, algorithms, and matrices; explores arithmetic and geometric sequences and series, mathematical induction and recursion, graph theory, computability and decidability, and automata theory; reviews the core issues of coding theory, language theory, software engineering, and software reliability, as well as formal methods and model checking; covers key topics on logic, from ancient Greek contributions to modern applications in AI, and discusses the nature of mathematical proof and theorem proving; presents a short introduction to probability and statistics, complex numbers and quaternions, and calculus. This engaging and easy-to-understand book will appeal to students of computer science wishing for an overview of the mathematics used in computing, and to mathematicians curious about how their subject is applied in the field of computer science. The book will also capture the interest of the motivated general reader.

Book A Concise Introduction to Logic

    Book Details:
  • Author : Craig DeLancey
  • Publisher : Open SUNY Textbooks
  • Release : 2017-02-06
  • ISBN : 9781942341437
  • Pages : pages

Download or read book A Concise Introduction to Logic written by Craig DeLancey and published by Open SUNY Textbooks. This book was released on 2017-02-06 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Measure Theory

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Book Set Theory

    Book Details:
  • Author : Daniel W. Cunningham
  • Publisher : Cambridge University Press
  • Release : 2016-07-18
  • ISBN : 1107120322
  • Pages : 265 pages

Download or read book Set Theory written by Daniel W. Cunningham and published by Cambridge University Press. This book was released on 2016-07-18 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Set theory can be considered a unifying theory for mathematics. This book covers the fundamentals of the subject.

Book Set Theory And Foundations Of Mathematics  An Introduction To Mathematical Logic   Volume I  Set Theory

Download or read book Set Theory And Foundations Of Mathematics An Introduction To Mathematical Logic Volume I Set Theory written by Douglas Cenzer and published by World Scientific. This book was released on 2020-04-04 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to axiomatic set theory and descriptive set theory. It is written for the upper level undergraduate or beginning graduate students to help them prepare for advanced study in set theory and mathematical logic as well as other areas of mathematics, such as analysis, topology, and algebra.The book is designed as a flexible and accessible text for a one-semester introductory course in set theory, where the existing alternatives may be more demanding or specialized. Readers will learn the universally accepted basis of the field, with several popular topics added as an option. Pointers to more advanced study are scattered throughout the text.

Book Principia Mathematica

Download or read book Principia Mathematica written by Alfred North Whitehead and published by . This book was released on 1910 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Engineering Design of Systems

Download or read book The Engineering Design of Systems written by Dennis M. Buede and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideal introduction to the engineering design of systems—now in a new edition The Engineering Design of Systems, Second Edition compiles a wealth of information from diverse sources to provide a unique, one-stop reference to current methods for systems engineering. It takes a model-based approach to key systems engineering design activities and introduces methods and models used in the real world. Features new to this edition include: The addition of Systems Modeling Language (SysML) to several of the chapters, as well as the introduction of new terminology Additional material on partitioning functions and components More descriptive material on usage scenarios based on literature from use case development Updated homework assignments The software product CORE (from Vitech Corporation) is used to generate the traditional SE figures and the software product MagicDraw UML with SysML plugins (from No Magic, Inc.) is used for the SysML figures This book is designed to be an introductory reference and textbook for professionals and students in systems engineering. It is also useful in related courses in engineering programs that emphasize design methods and models.

Book Proofs from THE BOOK

    Book Details:
  • Author : Martin Aigner
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 3662223430
  • Pages : 194 pages

Download or read book Proofs from THE BOOK written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.

Book Book of Proof

    Book Details:
  • Author : Richard H. Hammack
  • Publisher :
  • Release : 2016-01-01
  • ISBN : 9780989472111
  • Pages : 314 pages

Download or read book Book of Proof written by Richard H. Hammack and published by . This book was released on 2016-01-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.