Download or read book Sequential Simplex Optimization written by Frederick H. Walters and published by CRC Press. This book was released on 1991 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only book on the market devoted to sequential simplex optimization This book presents an easy-to-learn, effective optimization technique that can be applied immediately to many problems in the real world. The sequential simplex is an evolutionary operation (EVOP) technique that uses experimental results-it does not require a mathematical model. The authors present their subject with a level of detail and clarity that is refreshingly welcome in a technical text. The basics are presented first, followed by a detailed discussion of the fine points needed to get the most out of this optimization technique. Worksheets are provided and their use is illustrated with step-by-step worked examples. This makes the logic and calculations of the simplex algorithms easy to understand and follow. The text also provides more than 200 figures and over 500 references to sequential simplex applications, which allows rapid access to specific examples of the use of the technique in a wide range of applications. Sequential Simplex Optimization: A Technique for Improving Quality and Productivity in Research, Development, and Manufacturing is essential for any student or professional who desires to learn this innovative technique quickly and easily.
Download or read book Sequential Stochastic Optimization written by R. Cairoli and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequential Stochastic Optimization provides mathematicians andapplied researchers with a well-developed framework in whichstochastic optimization problems can be formulated and solved.Offering much material that is either new or has never beforeappeared in book form, it lucidly presents a unified theory ofoptimal stopping and optimal sequential control of stochasticprocesses. This book has been carefully organized so that littleprior knowledge of the subject is assumed; its only prerequisitesare a standard graduate course in probability theory and somefamiliarity with discrete-parameter martingales. Major topics covered in Sequential Stochastic Optimization include: * Fundamental notions, such as essential supremum, stopping points,accessibility, martingales and supermartingales indexed by INd * Conditions which ensure the integrability of certain suprema ofpartial sums of arrays of independent random variables * The general theory of optimal stopping for processes indexed byInd * Structural properties of information flows * Sequential sampling and the theory of optimal sequential control * Multi-armed bandits, Markov chains and optimal switching betweenrandom walks
Download or read book Sequential Approximate Multiobjective Optimization Using Computational Intelligence written by Hirotaka Nakayama and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many kinds of practical problems such as engineering design, industrial m- agement and ?nancial investment have multiple objectives con?icting with eachother. Thoseproblemscanbeformulatedasmultiobjectiveoptimization. In multiobjective optimization, there does not necessarily a unique solution which minimizes (or maximizes) all objective functions. We usually face to the situation in which if we want to improve some of objectives, we have to give up other objectives. Finally, we pay much attention on how much to improve some of objectives and instead how much to give up others. This is called “trade-o?. ” Note that making trade-o? is a problem of value ju- ment of decision makers. One of main themes of multiobjective optimization is how to incorporate value judgment of decision makers into decision s- port systems. There are two major issues in value judgment (1) multiplicity of value judgment and (2) dynamics of value judgment. The multiplicity of value judgment is treated as trade-o? analysis in multiobjective optimi- tion. On the other hand, dynamics of value judgment is di?cult to treat. However, it is natural that decision makers change their value judgment even in decision making process, because they obtain new information during the process. Therefore, decision support systems are to be robust against the change of value judgment of decision makers. To this aim, interactive p- grammingmethodswhichsearchasolutionwhileelicitingpartialinformation on value judgment of decision makers have been developed. Those methods are required to perform ?exibly for decision makers’ attitude.
Download or read book Timing Analysis and Optimization of Sequential Circuits written by Naresh Maheshwari and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen rapid strides in the level of sophistication of VLSI circuits. On the performance front, there is a vital need for techniques to design fast, low-power chips with minimum area for increasingly complex systems, while on the economic side there is the vastly increased pressure of time-to-market. These pressures have made the use of CAD tools mandatory in designing complex systems. Timing Analysis and Optimization of Sequential Circuits describes CAD algorithms for analyzing and optimizing the timing behavior of sequential circuits with special reference to performance parameters such as power and area. A unified approach to performance analysis and optimization of sequential circuits is presented. The state of the art in timing analysis and optimization techniques is described for circuits using edge-triggered or level-sensitive memory elements. Specific emphasis is placed on two methods that are true sequential timing optimizations techniques: retiming and clock skew optimization. Timing Analysis and Optimization of Sequential Circuits covers the following topics: Algorithms for sequential timing analysis Fast algorithms for clock skew optimization and their applications Efficient techniques for retiming large sequential circuits Coupling sequential and combinational optimizations. Timing Analysis and Optimization of Sequential Circuits is written for graduate students, researchers and professionals in the area of CAD for VLSI and VLSI circuit design.
Download or read book Global Optimization with Non Convex Constraints written by Roman G. Strongin and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everything should be made as simple as possible, but not simpler. (Albert Einstein, Readers Digest, 1977) The modern practice of creating technical systems and technological processes of high effi.ciency besides the employment of new principles, new materials, new physical effects and other new solutions ( which is very traditional and plays the key role in the selection of the general structure of the object to be designed) also includes the choice of the best combination for the set of parameters (geometrical sizes, electrical and strength characteristics, etc.) concretizing this general structure, because the Variation of these parameters ( with the structure or linkage being already set defined) can essentially affect the objective performance indexes. The mathematical tools for choosing these best combinations are exactly what is this book about. With the advent of computers and the computer-aided design the pro bations of the selected variants are usually performed not for the real examples ( this may require some very expensive building of sample op tions and of the special installations to test them ), but by the analysis of the corresponding mathematical models. The sophistication of the mathematical models for the objects to be designed, which is the natu ral consequence of the raising complexity of these objects, greatly com plicates the objective performance analysis. Today, the main (and very often the only) available instrument for such an analysis is computer aided simulation of an object's behavior, based on numerical experiments with its mathematical model.
Download or read book Sequential Optimization and Complementarity Techniques for Computing Economic Equilibria written by Stanford University. Department of Operations Research. Systems Optimization Laboratory and published by . This book was released on 1984 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Reinforcement Learning and Stochastic Optimization written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2022-03-15 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt: REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.
Download or read book Numerical Optimization written by Jorge Nocedal and published by Springer Science & Business Media. This book was released on 2006-12-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Download or read book Algorithms for Optimization written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2019-03-26 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.
Download or read book Iterative Optimization in Inverse Problems written by Charles Byrne and published by CRC Press. This book was released on 2014-02-12 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author's considerable research in the field, including his recently developed class of SUMMA algorithms
Download or read book Fast Sequential Monte Carlo Methods for Counting and Optimization written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2013-11-13 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the field, the book places emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Focusing on the concepts and application of Monte Carlo techniques, Fast Sequential Monte Carlo Methods for Counting and Optimization includes: Detailed algorithms needed to practice solving real-world problems Numerous examples with Monte Carlo method produced solutions within the 1-2% limit of relative error A new generic sequential importance sampling algorithm alongside extensive numerical results An appendix focused on review material to provide additional background information Fast Sequential Monte Carlo Methods for Counting and Optimization is an excellent resource for engineers, computer scientists, mathematicians, statisticians, and readers interested in efficient simulation techniques. The book is also useful for upper-undergraduate and graduate-level courses on Monte Carlo methods.
Download or read book Advances in Structural and Multidisciplinary Optimization written by Axel Schumacher and published by Springer. This book was released on 2017-12-04 with total page 2101 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume includes papers from the WSCMO conference in Braunschweig 2017 presenting research of all aspects of the optimal design of structures as well as multidisciplinary design optimization where the involved disciplines deal with the analysis of solids, fluids or other field problems. Also presented are practical applications of optimization methods and the corresponding software development in all branches of technology.
Download or read book Engineering Design Optimization written by Joaquim R. R. A. Martins and published by Cambridge University Press. This book was released on 2021-11-18 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.
Download or read book Comprehensive Chemometrics written by Steven Brown and published by Elsevier. This book was released on 2020-05-26 with total page 2948 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Chemometrics, Second Edition, Four Volume Set features expanded and updated coverage, along with new content that covers advances in the field since the previous edition published in 2009. Subject of note include updates in the fields of multidimensional and megavariate data analysis, omics data analysis, big chemical and biochemical data analysis, data fusion and sparse methods. The book follows a similar structure to the previous edition, using the same section titles to frame articles. Many chapters from the previous edition are updated, but there are also many new chapters on the latest developments. Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience
Download or read book DCIS2002 written by Salvador Bracho del Pino and published by Ed. Universidad de Cantabria. This book was released on 2002 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Este libro contiene las presentaciones de la XVII Conferencia de Diseño de Circuitos y Sistemas Integrados celebrado en el Palacio de la Magdalena, Santander, en noviembre de 2002. Esta Conferencia ha alcanzado un alto nivel de calidad, como consecuencia de su tradición y madurez, que lo convierte en uno de los acontecimientos más importantes para los circuitos de microelectrónica y la comunidad de diseño de sistemas en el sur de Europa. Desde su origen tiene una gran contribución de Universidades españolas, aunque hoy los autores participan desde catorce países
Download or read book Capacity and Inventory Planning for Make to Order Production Systems written by Klaus Altendorfer and published by Springer Science & Business Media. This book was released on 2013-07-31 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents different models for the simultaneous optimization problem of capacity investment and work release rule parameterization. The overall costs are minimized either including backorder costs or considering a service level constraint. The available literature is extended with the integration of a distributed customer required lead time in addition to the actual demand distribution. Furthermore, an endogenous production lead time is introduced. Different models for make-to-order production systems with one or multiple serial processing stages are developed. Capacity investment is linked to the processing rates of the machines or to the number of the machines. Results are equations for service level, tardiness, and FGI lead time in such a production system. For special cases with M/M/1 and M/M/s queues explicit solutions of the optimization problems or optimality conditions concerning capacity investment and work release rule parameterization are provided.
Download or read book Modeling Uncertainty written by Moshe Dror and published by Springer. This book was released on 2019-11-05 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, is a volume undertaken by the friends and colleagues of Sid Yakowitz in his honor. Fifty internationally known scholars have collectively contributed 30 papers on modeling uncertainty to this volume. Each of these papers was carefully reviewed and in the majority of cases the original submission was revised before being accepted for publication in the book. The papers cover a great variety of topics in probability, statistics, economics, stochastic optimization, control theory, regression analysis, simulation, stochastic programming, Markov decision process, application in the HIV context, and others. There are papers with a theoretical emphasis and others that focus on applications. A number of papers survey the work in a particular area and in a few papers the authors present their personal view of a topic. It is a book with a considerable number of expository articles, which are accessible to a nonexpert - a graduate student in mathematics, statistics, engineering, and economics departments, or just anyone with some mathematical background who is interested in a preliminary exposition of a particular topic. Many of the papers present the state of the art of a specific area or represent original contributions which advance the present state of knowledge. In sum, it is a book of considerable interest to a broad range of academic researchers and students of stochastic systems.