EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sequential Monte Carlo Methods for Nonlinear Discrete Time Filtering

Download or read book Sequential Monte Carlo Methods for Nonlinear Discrete Time Filtering written by Marcelo G. and published by Springer Nature. This book was released on 2022-06-01 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary

Book Sequential Monte Carlo Methods for Nonlinear Discrete time Filtering

Download or read book Sequential Monte Carlo Methods for Nonlinear Discrete time Filtering written by Marcelo G. S. Bruno and published by Morgan & Claypool Publishers. This book was released on 2013 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.

Book Sequential Monte Carlo Methods in Practice

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Book An Introduction to Sequential Monte Carlo

Download or read book An Introduction to Sequential Monte Carlo written by Nicolas Chopin and published by Springer Nature. This book was released on 2020-10-01 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Book Bayesian Filtering and Smoothing

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Book Fundamentals of Stochastic Filtering

Download or read book Fundamentals of Stochastic Filtering written by Alan Bain and published by Springer Science & Business Media. This book was released on 2008-10-08 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.

Book Bayesian Signal Processing

Download or read book Bayesian Signal Processing written by James V. Candy and published by John Wiley & Sons. This book was released on 2016-06-20 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the Bayesian approach to statistical signal processing for a variety of useful model sets This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems. The second edition of Bayesian Signal Processing features: “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.

Book Numerical Methods and Stochastics

Download or read book Numerical Methods and Stochastics written by T. J. Lyons and published by American Mathematical Soc.. This book was released on 2002 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume represents the proceedings of the Workshop on Numerical Methods and Stochastics held at The Fields Institute in April 1999. The goal of the workshop was to identify emerging ideas in probability theory that influence future work in both probability and numerical computation. The book focuses on up-to-date results and gives novel approaches to computational problems based on cutting-edge techniques from the theory of probability and stochastic processes. Three papers discuss particle system approximations to solutions of the stochastic filtering problem. Two papers treat particle system equations. The paper on rough paths describes how to generate good approximations to stochastic integrals. An expository paper discusses a long-standing conjecture: the stochastic fast dynamo effect. A final paper gives an analysis of the error in binomial and trinomial approximations to solutions of the Black-Scholes stochastic differential equations. The book is intended for graduate students and research mathematicians interested in probability theory.

Book The 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems  QuGOMS 11

Download or read book The 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems QuGOMS 11 written by Hansjörg Kutterer and published by Springer. This book was released on 2014-12-06 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings contain 25 papers, which are the peer-reviewed versions of presentations made at the 1st International Workshop on the Quality of Geodetic Observation and Monitoring (QuGOMS’11), held 13 April to 15 April 2011 in Garching, Germany. The papers were drawn from five sessions which reflected the following topic areas: (1) Uncertainty Modeling of Geodetic Data, (2) Theoretical Studies on Combination Strategies and Parameter Estimation, (3) Recursive State-Space Filtering, (4) Sensor Networks and Multi Sensor Systems in Engineering Geodesy, (5) Multi-Mission Approaches With View to Physical Processes in the Earth System.

Book Inference in Hidden Markov Models

Download or read book Inference in Hidden Markov Models written by Olivier Cappé and published by Springer Science & Business Media. This book was released on 2006-04-12 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Book Nonlinear Time Series

Download or read book Nonlinear Time Series written by Randal Douc and published by CRC Press. This book was released on 2014-01-06 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text emphasizes nonlinear models for a course in time series analysis. After introducing stochastic processes, Markov chains, Poisson processes, and ARMA models, the authors cover functional autoregressive, ARCH, threshold AR, and discrete time series models as well as several complementary approaches. They discuss the main limit theorems for Markov chains, useful inequalities, statistical techniques to infer model parameters, and GLMs. Moving on to HMM models, the book examines filtering and smoothing, parametric and nonparametric inference, advanced particle filtering, and numerical methods for inference.

Book Integrated Tracking  Classification  and Sensor Management

Download or read book Integrated Tracking Classification and Sensor Management written by Mahendra Mallick and published by John Wiley & Sons. This book was released on 2012-11-05 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique guide to the state of the art of tracking, classification, and sensor management This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications. Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include: An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR) With its emphasis on the latest research results, Integrated Tracking, Classification, and Sensor Management is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.

Book Nonlinear Filtering

Download or read book Nonlinear Filtering written by Jitendra R. Raol and published by CRC Press. This book was released on 2017-07-12 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.

Book System Identification 2003

Download or read book System Identification 2003 written by Paul Van Den Hof and published by Elsevier. This book was released on 2004-06-29 with total page 2092 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems*Provides the latest research on System Identification*Contains contributions written by experts in the field*Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.

Book Readings in Unobserved Components Models

Download or read book Readings in Unobserved Components Models written by Andrew C. Harvey and published by Oxford University Press, USA. This book was released on 2005 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a collection of readings which give the reader an idea of the nature and scope of unobserved components (UC) models and the methods used to deal with them. The book is intended to give a self-contained presentation of the methods and applicative issues. Harvey has made major contributions to this field and provides substantial introductions throughout the book to form a unified view of the literature. About the Series Advanced Texts in Econometrics is a distinguished and rapidly expanding series in which leading econometricians assess recent developments in such areas as stochastic probability, panel and time series data analysis, modeling, and cointegration. In both hardback and affordable paperback, each volume explains the nature and applicability of a topic in greater depth than possible in introductory textbooks or single journal articles. Each definitive work is formatted to be as accessible and convenient for those who are not familiar with the detailed primary literature.

Book Nonlinear Approaches in Engineering Applications

Download or read book Nonlinear Approaches in Engineering Applications written by Reza N. Jazar and published by Springer. This book was released on 2016-05-27 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book looks at the broad field of engineering science through the lens of nonlinear approaches. Examples focus on issues in vehicle technology, including vehicle dynamics, vehicle-road interaction, steering, and control for electric and hybrid vehicles. Also included are discussions on train and tram systems, aerial vehicles, robot-human interaction, and contact and scratch analysis at the micro/nanoscale. Chapters are based on invited contributions from world-class experts in the field who advance the future of engineering by discussing the development of more optimal, accurate, efficient, and cost and energy effective systems. This book is appropriate for researchers, students, and practicing engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems.

Book Bayesian Time Series Models

Download or read book Bayesian Time Series Models written by David Barber and published by Cambridge University Press. This book was released on 2011-08-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.