EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sequential Monte Carlo Methods for Dynamic Systems

Download or read book Sequential Monte Carlo Methods for Dynamic Systems written by Jun S. Liu and published by . This book was released on 1997 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sequential Monte Carlo Methods in Practice

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Book Sequential Monte Carlo Methods for Data Assimilation in Strongly Nonlinear Dynamics

Download or read book Sequential Monte Carlo Methods for Data Assimilation in Strongly Nonlinear Dynamics written by Zhiyu Wang and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data assimilation is the process of estimating the state of dynamic systems (linear or nonlinear, Gaussian or non-Gaussian) as accurately as possible from noisy observational data. Although the Three Dimensional Variational (3D-VAR) methods, Four Dimensional Variational (4D-VAR) methods and Ensemble Kalman filter (EnKF) methods are widely used and effective for linear and Gaussian dynamics, new methods of data assimilation are required for the general situation, that is, nonlinear non-Gaussian dynamics. General Bayesian recursive estimation theory is reviewed in this thesis. The Bayesian estimation approach provides a rather general and powerful framework for handling nonlinear, non-Gaussian, as well as linear, Gaussian estimation problems. Despite a general solution to the nonlinear estimation problem, there is no closed-form solution in the general case. Therefore, approximate techniques have to be employed. In this thesis, the sequential Monte Carlo (SMC) methods, commonly referred to as the particle filter, is presented to tackle non-linear, non-Gaussian estimation problems. In this thesis, we use the SMC methods only for the nonlinear state estimation problem, however, it can also be used for the nonlinear parameter estimation problem. In order to demonstrate the new methods in the general nonlinear non-Gaussian case, we compare Sequential Monte Carlo (SMC) methods with the Ensemble Kalman Filter (EnKF) by performing data assimilation in nonlinear and non-Gaussian dynamic systems. The models used in this study are referred to as state-space models. The Lorenz 1963 and 1966 models serve as test beds for examining the properties of these assimilation methods when used in highly nonlinear dynamics. The application of Sequential Monte Carlo methods to different fixed parameters in dynamic models is considered. Four different scenarios in the Lorenz 1063 [sic] model and three different scenarios in the Lorenz 1996 model are designed in this study for both the SMC methods and EnKF method with different filter size from 50 to 1000. The comparison results show that the SMC methods have theoretical advantages and also work well with highly nonlinear Lorenz models for state estimation in practice. Although Ensemble Kalman Filter (EnKF) computes only the mean and the variance of the state, which is based on linear state-space models with Gaussian noise, the SMC methods do not outperform EnKF in practical applications as we expected in theoretical insights. The main drawback of Sequential Monte Carlo (SMC) methods is that it requires much computational power, which is the obstacle to extend SMC methods to high dimensional atmospheric and oceanic models. We try to interpret the reason why the SMC data assimilation result is similar to the EnKF data assimilation result in these experiments and discuss the potential future application for high dimensional realistic atmospheric and oceanic models in this thesis.

Book Sequential Monte Carlo Methods for Nonlinear Discrete time Filtering

Download or read book Sequential Monte Carlo Methods for Nonlinear Discrete time Filtering written by Marcelo G. S. Bruno and published by Morgan & Claypool Publishers. This book was released on 2013 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.

Book An Introduction to Sequential Monte Carlo

Download or read book An Introduction to Sequential Monte Carlo written by Nicolas Chopin and published by Springer Nature. This book was released on 2020-10-01 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Book Sequential Monte Carlo Methods for Parameter Estimation  Dynamic State Estimation and Control in Power Systems

Download or read book Sequential Monte Carlo Methods for Parameter Estimation Dynamic State Estimation and Control in Power Systems written by Daniel Adrian Maldonado and published by . This book was released on 2017 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Monte Carlo Strategies in Scientific Computing

Download or read book Monte Carlo Strategies in Scientific Computing written by Jun S. Liu and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.

Book Bayesian Estimation by Sequential Monte Carlo Sampling for Nonlinear Dynamic Systems

Download or read book Bayesian Estimation by Sequential Monte Carlo Sampling for Nonlinear Dynamic Systems written by Wen-shiang Chen and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Precise estimation of state variables and model parameters is essential for efficient process operation, including model predictive control, abnormal situation management, and decision making under uncertainty. Bayesian formulation of the estimation problem suggests a general solution for all types of systems. Even though the theory of Bayesian estimation of nonlinear dynamic systems has been available for decades, practical implementation has not been feasible due to computational and methodological challenges. Consequently, most existing methods rely on simplifying assumptions to obtain a tractable but approximate solution. For example, extended Kalman filtering (EKF) linearizes the process model and assumes Gaussian prior and noise. Moving horizon based least-squares estimation (MHE) also assumes Gaussian or other fixed-shape prior and noise to obtain a least-squares optimization problem. MHE can impose constraints, but is non-recursive and requires computationally expensive nonlinear or quadratic programming. This dissertation introduces sequential Monte Carlo sampling (SMC) for Bayesian estimation of chemical process systems. This recent approach approximates computationally expensive integration by recursive Monte Carlo sampling, and can obtain accurate estimates of posterior distributions efficiently with minimum assumptions. This approach has not been systematically compared with estimation methods popular for chemical processes, including EKF and MHE. In addition to comparing various estimation methods, this dissertation also develops a practical framework of SMC for handling process constraints based on an acceptance/rejection algorithm. Furthermore, a novel empirical Bayes approach is developed to deal with practical challenges due to degeneracy and a poor initial guess. The ability of the proposed approach to be more computationally efficient and at least as accurate as MHE is demonstrated via several case studies. A high-dimensional polymerization process is particularly studied to examine the effect of increasing dimensionality on computation load. Empirical results indicate that SMC does not necessarily increase its consumption of CPU cycles dramatically, and may only be slightly dependent on dimensionality. Although this research has only focused on data rectification of nonlinear dynamic systems, the approach is broadly applicable to most process engineering tasks. With increasing computational ability, and theoretical advances, SMC is expected to be an active area of research and application in near future.

Book Random Finite Sets for Robot Mapping   SLAM

Download or read book Random Finite Sets for Robot Mapping SLAM written by John Stephen Mullane and published by Springer Science & Business Media. This book was released on 2011-05-19 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.

Book Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Download or read book Accelerating Monte Carlo methods for Bayesian inference in dynamical models written by Johan Dahlin and published by Linköping University Electronic Press. This book was released on 2016-03-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.

Book Sequential Monte Carlo Methods for Dynamic State Space Models with Applications to Communications

Download or read book Sequential Monte Carlo Methods for Dynamic State Space Models with Applications to Communications written by Jayesh Hukumchand Kotecha and published by . This book was released on 2001 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Monte Carlo Methods and Applications

Download or read book Monte Carlo Methods and Applications written by Karl K. Sabelfeld and published by Walter de Gruyter. This book was released on 2012-12-06 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the proceedings of the "8th IMACS Seminar on Monte Carlo Methods" held from August 29 to September 2, 2011 in Borovets, Bulgaria, and organized by the Institute of Information and Communication Technologies of the Bulgarian Academy of Sciences in cooperation with the International Association for Mathematics and Computers in Simulation (IMACS). Included are 24 papers which cover all topics presented in the sessions of the seminar: stochastic computation and complexity of high dimensional problems, sensitivity analysis, high-performance computations for Monte Carlo applications, stochastic metaheuristics for optimization problems, sequential Monte Carlo methods for large-scale problems, semiconductor devices and nanostructures. The history of the IMACS Seminar on Monte Carlo Methods goes back to April 1997 when the first MCM Seminar was organized in Brussels: 1st IMACS Seminar, 1997, Brussels, Belgium 2nd IMACS Seminar, 1999, Varna, Bulgaria 3rd IMACS Seminar, 2001, Salzburg, Austria 4th IMACS Seminar, 2003, Berlin, Germany 5th IMACS Seminar, 2005, Tallahassee, USA 6th IMACS Seminar, 2007, Reading, UK 7th IMACS Seminar, 2009, Brussels, Belgium 8th IMACS Seminar, 2011, Borovets, Bulgaria

Book Versatile Methods for the Sequential Monte Carlo Optimization of Unconstrained Stochastic Systems

Download or read book Versatile Methods for the Sequential Monte Carlo Optimization of Unconstrained Stochastic Systems written by Harold Joseph Kushner and published by . This book was released on 1972 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: The report contains 2 papers. The first paper discusses a versatile family of Monte Carlo Methods for the sequential optimization of stochastic systems. The method selects a sequence of successive one-dimensional search directions, defines a (stochastic) search in each of the directions, where the data used for both the one-dimensional search and the direction determination are merely noise-corrupted observations on the system; In the second paper, Kesten had proposed a method for adjusting the coefficients of a scalar stochastic approximation process, and proved w.p.1. convergence. A family of multidimensional processes for function minimization are treated here. Each method consists of a sequence truncated one-dimensional procedures of the Kesten type. The methods seem to offer a number of advantages over the usual Kiefer-Wolfowitz procedures, and are more natural analogs of the schemes in common use in deterministic optimization theory. (Author).

Book Advanced Markov Chain Monte Carlo Methods

Download or read book Advanced Markov Chain Monte Carlo Methods written by Faming Liang and published by John Wiley & Sons. This book was released on 2011-07-05 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.

Book Analytical Methods for Dynamic Modelers

Download or read book Analytical Methods for Dynamic Modelers written by Hazhir Rahmandad and published by MIT Press. This book was released on 2015-11-27 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel

Book Simulation and the Monte Carlo Method

Download or read book Simulation and the Monte Carlo Method written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2016-10-21 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.

Book Markov Chain Monte Carlo

Download or read book Markov Chain Monte Carlo written by W. S. Kendall and published by World Scientific. This book was released on 2005 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Chain Monte Carlo (MCMC) originated in statistical physics, but has spilled over into various application areas, leading to a corresponding variety of techniques and methods. That variety stimulates new ideas and developments from many different places, and there is much to be gained from cross-fertilization. This book presents five expository essays by leaders in the field, drawing from perspectives in physics, statistics and genetics, and showing how different aspects of MCMC come to the fore in different contexts. The essays derive from tutorial lectures at an interdisciplinary program at the Institute for Mathematical Sciences, Singapore, which exploited the exciting ways in which MCMC spreads across different disciplines.