Download or read book Sentiment Analysis of Music using Statistics and Machine Learning written by Aakash Mukherjee and published by Sanctum Books. This book was released on 2022-10-16 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sentiment analysis and prediction of contemporary Music can have a wide range of applications in modern society, for instance, selecting music for public institutions such as hospitals or restaurants to potentially improve the emotional well-being of personnel, patients, and customers respectively. In this project, a music recommendation system is built upon a Naive Bayes Classifier trained to predict the sentiment of songs based on song lyrics alone. Online streaming platforms have become one of the most important forms of music consumption. Most streaming platforms provide tools to assess the popularity of a song in the forms of scores and rankings. In this book, we address two issues related to song popularity. First, we predict whether an already popular song may attract higher-than-average public interest and become viral. Second, we predict whether sudden spikes in the public interest will translate into long-term popularity growth. We base our findings on data from the streaming platform Billboard, Spotify, and consider appearances in its "Most-Popular" list as indicative of popularity, and appearances in its "Virals" list as indicative of interest growth. We approach the problem as a classification task and employ a Support Vector Machine model built on popularity information to predict interest, and vice versa.
Download or read book Cognitive Analytics Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2020-03-06 with total page 1961 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries, including business and healthcare. It is necessary to develop specific software programs that can analyze and interpret large amounts of data quickly in order to ensure adequate usage and predictive results. Cognitive Analytics: Concepts, Methodologies, Tools, and Applications provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques. It also examines the incorporation of pattern management as well as decision-making and prediction processes through the use of data management and analysis. Highlighting a range of topics such as natural language processing, big data, and pattern recognition, this multi-volume book is ideally designed for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, software engineers, IT specialists, and academicians.
Download or read book Music Emotion Recognition written by Yi-Hsuan Yang and published by CRC Press. This book was released on 2011-02-22 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a complete review of existing work in music emotion developed in psychology and engineering, Music Emotion Recognition explains how to account for the subjective nature of emotion perception in the development of automatic music emotion recognition (MER) systems. Among the first publications dedicated to automatic MER, it begins with
Download or read book Deep Learning Techniques for Music Generation written by Jean-Pierre Briot and published by Springer. This book was released on 2019-11-08 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure. The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.
Download or read book Statistical Analysis of Folk Songs of Jharkhand written by Shivani Tiwari and published by Sanctum Books. This book was released on 2022-10-16 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: Folk songs play a very significant role in Indian classical music as the root of Indian classical music is the Indian folk music itself. Different states have different folk songs. This work deals with the statistical analysis of the folk songs of Jharkhand. Each song's analysis concerns with verifying whether the probabilities of notes in the song are fixed throughout the song or are the note probabilities varying. This tells us whether the probability distribution followed by the notes is multinomial or quasi multinomial respectively. Statistical parameterization method is used to quantify melody and rhythm. The presence of rhythm and melody is also analyzed by the Inter Onset Interval (IOI) and note duration graphs. The book should be found useful by music researchers and students of music and musicology, ethnomusicologists and music enthusiasts.
Download or read book DATA VISUALIZATION AND INTERPRETATION USING MACHINE LEARNING written by Anjan Kumar Reddy Ayyadapu and published by Xoffencerpublication. This book was released on 2024-04-18 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the various definitions of artificial intelligence, "machine-made intelligence" and "an artificial embodiment of some or all of the intellectual abilities possessed by humans" are two examples of what is meant by the term. Among the different explanations of artificial intelligence, the following are some essential points: "machines endowed with human-level intellect that can comprehend human-level reasoning, conduct, and thought processes." It is commonly believed that the ability to "apply prior knowledge and experience to achieve challenging new tasks" is what distinguishes a person as intelligent. One may make the case that this is a reference to the inherent wisdom that people possess in the end. In addition to being connected to the capacity for learning, this ability can be leveraged to respond in a flexible manner to a variety of situations and obstacles. A person's learning ability can be defined as their capability to learn new things in a short amount of time and in a comprehensive manner, or to acquire the same information in a more sophisticated manner. There is a correlation between prior knowledge and academic achievement, intellectual reasoning, and behavior; hence, intelligence may be molded via the process of being exposed to new material and training. It is for this reason that "the ability to solve problems" is frequently considered to be the starting point and ultimate definition of intelligence. When it comes to addressing a wide variety of problems, we require individuals who possess a high level of intelligence. Consider the game of chess as an illustration. You'll need to draw on knowledge from a broad variety of sources, such as books, internet resources, and other players, in order to make accurate guesses and put them into action. In order to carry out these acts, a high level of cognitive capacity is required, and it is via intelligencebased learning that new ways of thinking are developed. "Thought" is defined as "consciousness" in scientific contexts, which in turn characterize it as "experience" of an object in its whole.
Download or read book Sentiment Analysis written by Bing Liu and published by Cambridge University Press. This book was released on 2020-10-15 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sentiment analysis is the computational study of people's opinions, sentiments, emotions, moods, and attitudes. This fascinating problem offers numerous research challenges, but promises insight useful to anyone interested in opinion analysis and social media analysis. This comprehensive introduction to the topic takes a natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs commonly used to express opinions, sentiments, and emotions. The book covers core areas of sentiment analysis and also includes related topics such as debate analysis, intention mining, and fake-opinion detection. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. In addition to traditional computational methods, this second edition includes recent deep learning methods to analyze and summarize sentiments and opinions, and also new material on emotion and mood analysis techniques, emotion-enhanced dialogues, and multimodal emotion analysis.
Download or read book Text Mining with R written by Julia Silge and published by "O'Reilly Media, Inc.". This book was released on 2017-06-12 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.
Download or read book Data Science written by Xiaohui Cheng and published by Springer Nature. This book was released on 2019-09-13 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set (CCIS 1058 and 1059) constitutes the refereed proceedings of the 5th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2019 held in Guilin, China, in September 2019. The 104 revised full papers presented in these two volumes were carefully reviewed and selected from 395 submissions. The papers cover a wide range of topics related to basic theory and techniques for data science including data mining; data base; net work; security; machine learning; bioinformatics; natural language processing; software engineering; graphic images; system; education; application.
Download or read book Deep Learning for Social Media Data Analytics written by Tzung-Pei Hong and published by Springer Nature. This book was released on 2022-09-18 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book covers ongoing research in both theory and practical applications of using deep learning for social media data. Social networking platforms are overwhelmed by different contents, and their huge amounts of data have enormous potential to influence business, politics, security, planning and other social aspects. Recently, deep learning techniques have had many successful applications in the AI field. The research presented in this book emerges from the conviction that there is still much progress to be made toward exploiting deep learning in the context of social media data analytics. It includes fifteen chapters, organized into four sections that report on original research in network structure analysis, social media text analysis, user behaviour analysis and social media security analysis. This work could serve as a good reference for researchers, as well as a compilation of innovative ideas and solutions for practitioners interested in applying deep learning techniques to social media data analytics.
Download or read book Machine Learning Techniques for Text written by Nikos Tsourakis and published by Packt Publishing Ltd. This book was released on 2022-10-31 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your Python text processing skills to another level by learning about the latest natural language processing and machine learning techniques with this full color guide Key FeaturesLearn how to acquire and process textual data and visualize the key findingsObtain deeper insight into the most commonly used algorithms and techniques and understand their tradeoffsImplement models for solving real-world problems and evaluate their performanceBook Description With the ever-increasing demand for machine learning and programming professionals, it's prime time to invest in the field. This book will help you in this endeavor, focusing specifically on text data and human language by steering a middle path among the various textbooks that present complicated theoretical concepts or focus disproportionately on Python code. A good metaphor this work builds upon is the relationship between an experienced craftsperson and their trainee. Based on the current problem, the former picks a tool from the toolbox, explains its utility, and puts it into action. This approach will help you to identify at least one practical use for each method or technique presented. The content unfolds in ten chapters, each discussing one specific case study. For this reason, the book is solution-oriented. It's accompanied by Python code in the form of Jupyter notebooks to help you obtain hands-on experience. A recurring pattern in the chapters of this book is helping you get some intuition on the data and then implement and contrast various solutions. By the end of this book, you'll be able to understand and apply various techniques with Python for text preprocessing, text representation, dimensionality reduction, machine learning, language modeling, visualization, and evaluation. What you will learnUnderstand fundamental concepts of machine learning for textDiscover how text data can be represented and build language modelsPerform exploratory data analysis on text corporaUse text preprocessing techniques and understand their trade-offsApply dimensionality reduction for visualization and classificationIncorporate and fine-tune algorithms and models for machine learningEvaluate the performance of the implemented systemsKnow the tools for retrieving text data and visualizing the machine learning workflowWho this book is for This book is for professionals in the area of computer science, programming, data science, informatics, business analytics, statistics, language technology, and more who aim for a gentle career shift in machine learning for text. Students in relevant disciplines that seek a textbook in the field will benefit from the practical aspects of the content and how the theory is presented. Finally, professors teaching a similar course will be able to pick pertinent topics in terms of content and difficulty. Beginner-level knowledge of Python programming is needed to get started with this book.
Download or read book Statistical and Machine Learning Data Mining written by Bruce Ratner and published by CRC Press. This book was released on 2012-02-28 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible — its utilitarian data mining features start where statistical data mining stops. This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.
Download or read book Proceedings of International Conference on Information Technology and Applications written by Abrar Ullah and published by Springer Nature. This book was released on 2022-04-21 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes high-quality papers presented at 15th International Conference on Information Technology and Applications (ICITA 2021), held in Dubai, UAE during 13 – 14 November 2021. The book presents original research work of academics and industry professionals to exchange their knowledge of the state-of-the-art research and development in information technology and applications. The topics covered in the book are cloud computing, business process engineering, machine learning, evolutionary computing, big data analytics, internet of things and cyber-physical systems, information and knowledge management, computer vision and image processing, computer graphics and games programming, mobile computing, ontology engineering, software and systems modelling, human computer interaction, online learning / e-learning, computer networks, and web engineering.
Download or read book Machine Intelligence and Data Science Applications written by Vaclav Skala and published by Springer Nature. This book was released on 2022-08-01 with total page 909 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a compilation of peer reviewed papers presented at International Conference on Machine Intelligence and Data Science Applications (MIDAS 2021), held in Comilla University, Cumilla, Bangladesh during 26 – 27 December 2021. The book covers applications in various fields like image processing, natural language processing, computer vision, sentiment analysis, speech and gesture analysis, etc. It also includes interdisciplinary applications like legal, healthcare, smart society, cyber physical system and smart agriculture, etc. The book is a good reference for computer science engineers, lecturers/researchers in machine intelligence discipline and engineering graduates.
Download or read book Advanced Data Mining Tools and Methods for Social Computing written by Sourav De and published by Academic Press. This book was released on 2022-01-14 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Data Mining Tools and Methods for Social Computing explores advances in the latest data mining tools, methods, algorithms and the architectures being developed specifically for social computing and social network analysis. The book reviews major emerging trends in technology that are supporting current advancements in social networks, including data mining techniques and tools. It also aims to highlight the advancement of conventional approaches in the field of social networking. Chapter coverage includes reviews of novel techniques and state-of-the-art advances in the area of data mining, machine learning, soft computing techniques, and their applications in the field of social network analysis. - Provides insights into the latest research trends in social network analysis - Covers a broad range of data mining tools and methods for social computing and analysis - Includes practical examples and case studies across a range of tools and methods - Features coding examples and supplementary data sets in every chapter
Download or read book Tools for Design Implementation and Verification of Emerging Information Technologies written by Jianghua Liu and published by Springer Nature. This book was released on 2024-01-04 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed post-conference proceedings of the 18th EAI International Conference on Tools for Design, Implementation and Verification of Emerging Information Technologies, TridentCom 2023, which was held in Nanjing, China, during November 11-13, 2023. The 9 full papers were selected from 30 submissions and deal the emerging technologies of big data, cyber-physical systems and computer communications. The papers are grouped in thematical sessions on blockchain and its applications; emerging applications; AI and its security.
Download or read book Intelligence in Big Data Technologies Beyond the Hype written by J. Dinesh Peter and published by Springer Nature. This book was released on 2020-07-25 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a compendium of the proceedings of the International Conference on Big-Data and Cloud Computing. The papers discuss the recent advances in the areas of big data analytics, data analytics in cloud, smart cities and grid, etc. This volume primarily focuses on the application of knowledge which promotes ideas for solving problems of the society through cutting-edge big-data technologies. The essays featured in this proceeding provide novel ideas that contribute for the growth of world class research and development. It will be useful to researchers in the area of advanced engineering sciences.