Download or read book Semigroups Underlying First Order Logic written by William Craig and published by American Mathematical Soc.. This book was released on 2006 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boolean, relation-induced, and other operations for dealing with first-order definability Uniform relations between sequences Diagonal relations Uniform diagonal relations and some kinds of bisections or bisectable relations Presentation of ${\mathbf S}_q$, ${\mathbf S}_p$ and related structures Presentation of ${\mathbf S}_{pq}$, ${\mathbf S}_{pe}$ and related structures Appendix. Presentation of ${\mathbf S}_{pqe}$ and related structures Bibliography Index of symbols Index of phrases and subjects List of relations involved in presentations Synopsis of presentations
Download or read book The Hilbert Function of a Level Algebra written by A. V. Geramita and published by American Mathematical Soc.. This book was released on 2007 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.
Download or read book Limit Theorems of Polynomial Approximation with Exponential Weights written by Michael I. Ganzburg and published by American Mathematical Soc.. This book was released on 2008 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author develops the limit relations between the errors of polynomial approximation in weighted metrics and apply them to various problems in approximation theory such as asymptotically best constants, convergence of polynomials, approximation of individual functions, and multidimensional limit theorems of polynomial approximation.
Download or read book Galois Extensions of Structured Ring Spectra Stably Dualizable Groups written by John Rognes and published by American Mathematical Soc.. This book was released on 2008 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author introduces the notion of a Galois extension of commutative $S$-algebras ($E_\infty$ ring spectra), often localized with respect to a fixed homology theory. There are numerous examples, including some involving Eilenberg-Mac Lane spectra of commutative rings, real and complex topological $K$-theory, Lubin-Tate spectra and cochain $S$-algebras. He establishes the main theorem of Galois theory in this generality. Its proof involves the notions of separable and etale extensions of commutative $S$-algebras, and the Goerss-Hopkins-Miller theory for $E_\infty$ mapping spaces. He shows that the global sphere spectrum $S$ is separably closed, using Minkowski's discriminant theorem, and he estimates the separable closure of its localization with respect to each of the Morava $K$-theories. He also defines Hopf-Galois extensions of commutative $S$-algebras and studies the complex cobordism spectrum $MU$ as a common integral model for all of the local Lubin-Tate Galois extensions. The author extends the duality theory for topological groups from the classical theory for compact Lie groups, via the topological study by J. R. Klein and the $p$-complete study for $p$-compact groups by T. Bauer, to a general duality theory for stably dualizable groups in the $E$-local stable homotopy category, for any spectrum $E$.
Download or read book On Necessary and Sufficient Conditions for L p Estimates of Riesz Transforms Associated to Elliptic Operators on mathbb R n and Related Estimates written by Pascal Auscher and published by American Mathematical Soc.. This book was released on 2007 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: This memoir focuses on $Lp$ estimates for objects associated to elliptic operators in divergence form: its semigroup, the gradient of the semigroup, functional calculus, square functions and Riesz transforms. The author introduces four critical numbers associated to the semigroup and its gradient that completely rule the ranges of exponents for the $Lp$ estimates. It appears that the case $p2$ which is new. The author thus recovers in a unified and coherent way many $Lp$ estimates and gives further applications. The key tools from harmonic analysis are two criteria for $Lp$ boundedness, one for $p2$ but in ranges different from the usual intervals $(1,2)$ and $(2,\infty)$.
- Author : Michael Kapovich
- Publisher : American Mathematical Soc.
- Release : 2008
- ISBN : 0821840541
- Pages : 98 pages
The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra
Download or read book The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra written by Michael Kapovich and published by American Mathematical Soc.. This book was released on 2008 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.
Download or read book Weakly Differentiable Mappings between Manifolds written by Piotr Hajłasz and published by American Mathematical Soc.. This book was released on 2008 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study Sobolev classes of weakly differentiable mappings $f: {\mathbb X}\rightarrow {\mathbb Y}$ between compact Riemannian manifolds without boundary. These mappings need not be continuous. They actually possess less regularity than the mappings in ${\mathcal W}{1, n}({\mathbb X}\, \, {\mathbb Y})\, $, $n=\mbox{dim}\, {\mathbb X}$. The central themes being discussed a
Download or read book KAM Stability and Celestial Mechanics written by Alessandra Celletti and published by American Mathematical Soc.. This book was released on 2007 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ``physical systems'' for ``observable'' values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small, the RCP3BP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non-small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass ratio is slightly less than 1/1000. The authors consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravitational attraction regarding such a system as a prototype of a RCP3BP. for values of mass ratios up to 1/1000, they prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the evolution of phase points ``close'' to the observed physical data of the Sun-Jupiter-Victoria system. As a consequence, in the RCP3BP description, the motion of Victoria is proven to be forever close to an elliptical motion. The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-Jupiter-Victoria system. The paper is self-contained but does not include the ($\sim$ 12000 lines) computer programs, which may be obtained by sending an e-mail to one of the authors.
Download or read book Invariant Means and Finite Representation Theory of C Algebras written by Nathanial Patrick Brown and published by American Mathematical Soc.. This book was released on 2006 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various subsets of the tracial state space of a unital C$*$-algebra are studied. The largest of these subsets has a natural interpretation as the space of invariant means. II$ 1$-factor representations of a class of C$*$-algebras considered by Sorin Popa are also studied. These algebras are shown to have an unexpected variety of II$ 1$-factor representations. In addition to developing some general theory we also show that these ideas are related to numerous other problems inoperator algebras.
Download or read book Operator Valued Hardy Spaces written by Tao Mei and published by American Mathematical Soc.. This book was released on 2007 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author gives a systematic study of the Hardy spaces of functions with values in the noncommutative $Lp$-spaces associated with a semifinite von Neumann algebra $\mathcal{M .$ This is motivated by matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), as well as by the recent development of noncommutative martingale inequalities. in this paper noncommutative Hardy spaces are defined by noncommutative Lusin integral function, and it isproved that they are equivalent to those defined by noncommutative Littlewood-Paley G-functions. The main results of this paper include: (i) The analogue in the author's setting of the classical Fefferman duality theorem between $\mathcal{H 1$ and $\mathrm{BMO $. (ii) The atomic decomposition of theauthor's noncommutative $\mathcal{H 1.$ (iii) The equivalence between the norms of the noncommutative Hardy spaces and of the noncommutative $Lp$-spaces $(1
Download or read book The Structure of the Rational Concordance Group of Knots written by Jae Choon Cha and published by American Mathematical Soc.. This book was released on 2007 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author studies the group of rational concordance classes of codimension two knots in rational homology spheres. He gives a full calculation of its algebraic theory by developing a complete set of new invariants. For computation, he relates these invariants with limiting behaviour of the Artin reciprocity over an infinite tower of number fields and analyzes it using tools from algebraic number theory. In higher dimensions it classifies the rational concordance group of knots whose ambient space satisfies a certain cobordism theoretic condition. In particular, he constructs infinitely many torsion elements. He shows that the structure of the rational concordance group is much more complicated than the integral concordance group from a topological viewpoint. He also investigates the structure peculiar to knots in rational homology 3-spheres. To obtain further nontrivial obstructions in this dimension, he develops a technique of controlling a certain limit of the von Neumann $L 2$-signature invariants.
Download or read book Borel Liftings of Borel Sets Some Decidable and Undecidable Statements written by Gabriel Debs and published by American Mathematical Soc.. This book was released on 2007 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the aims of this work is to investigate some natural properties of Borel sets which are undecidable in $ZFC$. The authors' starting point is the following elementary, though non-trivial result: Consider $X \subset 2omega\times2omega$, set $Y=\pi(X)$, where $\pi$ denotes the canonical projection of $2omega\times2omega$ onto the first factor, and suppose that $(\star)$: Any compact subset of $Y$ is the projection of some compact subset of $X$. If moreover $X$ is $\mathbf{\Pi 0 2$ then $(\star\star)$: The restriction of $\pi$ to some relatively closed subset of $X$ is perfect onto $Y$ it follows that in the present case $Y$ is also $\mathbf{\Pi 0 2$. Notice that the reverse implication $(\star\star)\Rightarrow(\star)$ holds trivially for any $X$ and $Y$. But the implication $(\star)\Rightarrow (\star\star)$ for an arbitrary Borel set $X \subset 2omega\times2omega$ is equivalent to the statement $\forall \alpha\in \omegaomega, \, \aleph 1$ is inaccessible in $L(\alpha)$. More precisely The authors prove that the validity of $(\star)\Rightarrow(\star\star)$ for all $X \in \varSigma0 {1+\xi+1 $, is equivalent to $\aleph \xi \aleph 1$. $ZFC$, derive from $(\star)$ the weaker conclusion that $Y$ is also Borel and of the same Baire class as $X$. This last result solves an old problem about compact covering mappings. In fact these results are closely related to the following general boundedness principle Lift$(X, Y)$: If any compact subset of $Y$ admits a continuous lifting in $X$, then $Y$ admits a continuous lifting in $X$, where by a lifting of $Z\subset \pi(X)$ in $X$ we mean a mapping on $Z$ whose graph is contained in $X$. The main result of this work will give the exact set theoretical strength of this principle depending on the descriptive complexity of $X$ and $Y$. The authors also prove a similar result for a variation of Lift$(X, Y)$ in which continuous liftings are replaced by Borel liftings, and which answers a question of H. Friedman. Among other applications the authors obtain a complete solution to a problem which goes back to Lusin concerning the existence of $\mathbf{\Pi 1 1$ sets with all constituents in some given class $\mathbf{\Gamma $ of Borel sets, improving earlier results by J. Stern and R. Sami. Borel sets (in $ZFC$) of a new type, involving a large amount of abstract algebra. This representation was initially developed for the purposes of this proof, but has several other applications.
Download or read book Heisenberg Calculus and Spectral Theory of Hypoelliptic Operators on Heisenberg Manifolds written by Raphael Ponge and published by American Mathematical Soc.. This book was released on 2008 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: This memoir deals with the hypoelliptic calculus on Heisenberg manifolds, including CR and contact manifolds. In this context the main differential operators at stake include the Hormander's sum of squares, the Kohn Laplacian, the horizontal sublaplacian, the CR conformal operators of Gover-Graham and the contact Laplacian. These operators cannot be elliptic and the relevant pseudodifferential calculus to study them is provided by the Heisenberg calculus of Beals-Greiner andTaylor.
Download or read book Ramanujan s Forty Identities for the Rogers Ramanujan Functions written by Bruce C. Berndt and published by American Mathematical Soc.. This book was released on 2007 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sir Arthur Conan Doyle's famous fictional detective Sherlock Holmes and his sidekick Dr. Watson go camping and pitch their tent under the stars. During the night, Holmes wakes his companion and says, ``Watson, look up at the stars and tell me what you deduce.'' Watson says, ``I see millions of stars, and it is quite likely that a few of them are planets just like Earth. Therefore there may also be life on these planets.'' Holmes replies, ``Watson, you idiot. Somebody stole ourtent.'' When seeking proofs of Ramanujan's identities for the Rogers-Ramanujan functions, Watson, i.e., G. N. Watson, was not an ``idiot.'' He, L. J. Rogers, and D. M. Bressoud found proofs for several of the identities. A. J. F. Biagioli devised proofs for most (but not all) of the remaining identities.Although some of the proofs of Watson, Rogers, and Bressoud are likely in the spirit of those found by Ramanujan, those of Biagioli are not. in particular, Biagioli used the theory of modular forms. Haunted by the fact that little progress has been made into Ramanujan's insights on these identities in the past 85 years, the present authors sought ``more natural'' proofs. Thus, instead of a missing tent, we have had missing proofs, i.e., Ramanujan's missing proofs of his forty identities for theRogers-Ramanujan functions. in this paper, for 35 of the 40 identities, the authors offer proofs that are in the spirit of Ramanujan. Some of the proofs presented here are due to Watson, Rogers, and Bressoud, but most are new. Moreover, for several identities, the authors present two or threeproofs. For the five identities that they are unable to prove, they provide non-rigorous verifications based on an asymptotic analysis of the associated Rogers-Ramanujan functions. This method, which is related to the 5-dissection of the generating function for cranks found in Ramanujan's lost notebook, is what Ramanujan might have used to discover several of the more difficult identities. Some of the new methods in this paper can be employed to establish new identities for the Rogers-Ramanujanfunctions.
Download or read book Toroidal Dehn Fillings on Hyperbolic 3 Manifolds written by Cameron Gordon and published by American Mathematical Soc.. This book was released on 2008 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors determine all hyperbolic $3$-manifolds $M$ admitting two toroidal Dehn fillings at distance $4$ or $5$. They show that if $M$ is a hyperbolic $3$-manifold with a torus boundary component $T 0$, and $r,s$ are two slopes on $T 0$ with $\Delta(r,s) = 4$ or $5$ such that $M(r)$ and $M(s)$ both contain an essential torus, then $M$ is either one of $14$ specific manifolds $M i$, or obtained from $M 1, M 2, M 3$ or $M {14}$ by attaching a solid torus to $\partial M i - T 0$.All the manifolds $M i$ are hyperbolic, and the authors show that only the first three can be embedded into $S3$. As a consequence, this leads to a complete classification of all hyperbolic knots in $S3$ admitting two toroidal surgeries with distance at least $4$.
Download or read book Rank One Higgs Bundles and Representations of Fundamental Groups of Riemann Surfaces written by William Mark Goldman and published by American Mathematical Soc.. This book was released on 2008 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: This expository article details the theory of rank one Higgs bundles over a closed Riemann surface $X$ and their relation to representations of the fundamental group of $X$. The authors construct an equivalence between the deformation theories of flat connections and Higgs pairs. This provides an identification of moduli spaces arising in different contexts. The moduli spaces are real Lie groups. From each context arises a complex structure, and the different complex structures define a hyperkähler structure. The twistor space, real forms, and various group actions are computed explicitly in terms of the Jacobian of $X$. The authors describe the moduli spaces and their geometry in terms of the Riemann period matrix of $X$.
Download or read book Eigenvalues and Completeness for Regular and Simply Irregular Two Point Differential Operators written by John Locker and published by American Mathematical Soc.. This book was released on 2008 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph the author develops the spectral theory for an $n$th order two-point differential operator $L$ in the Hilbert space $L2[0,1]$, where $L$ is determined by an $n$th order formal differential operator $\ell$ having variable coefficients and by $n$ linearly independent boundary values $B 1, \ldots, B n$. Using the Birkhoff approximate solutions of the differential equation $(\rhon I - \ell)u = 0$, the differential operator $L$ is classified as belonging to one of threepossible classes: regular, simply irregular, or degenerate irregular. For the regular and simply irregular classes, the author develops asymptotic expansions of solutions of the differential equation $(\rhon I - \ell)u = 0$, constructs the characteristic determinant and Green's function,characterizes the eigenvalues and the corresponding algebraic multiplicities and ascents, and shows that the generalized eigenfunctions of $L$ are complete in $L2[0,1]$. He also gives examples of degenerate irregular differential operators illustrating some of the unusual features of this class.