EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Semiconductor Cavity QED and Related Devices

Download or read book Semiconductor Cavity QED and Related Devices written by Hui Tsʻao and published by . This book was released on 1997 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Cavity QED and Related Devices

Download or read book Semiconductor Cavity QED and Related Devices written by Hui Cao and published by . This book was released on 1997 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 1D and 2D Photonic Crystal Nanocavities for Semiconductor Cavity QED

Download or read book 1D and 2D Photonic Crystal Nanocavities for Semiconductor Cavity QED written by Benjamin Colby Richards and published by . This book was released on 2011 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of this dissertation is photonic crystal nanocavities for semiconductor cavity quantum electrodynamics. For the purposes of this study, these nanocavities may be one dimensional (1D) or two dimensional (2D) in design. The 2D devices are active and contain embedded InAs quantum dots (QDs), whereas the 1D devices are passive and contain no active emitters. The 2D photonic crystal nanocavities are fabricated in a slab of GaAs with a single layer of InAs QDs embedded in the slab. When a cavity mode substantially overlaps the QD ensemble, the dots affect the linewidths of the observed modes, leading to broadening of the linewidth at low excitation powers due to absorption and narrowing of the linewidths at high excitation powers due to gain when the QD ensemble absorption is saturated. We observe lasing from a few QDs in such a nanocavity. A technique is discussed with allows us to tune the resonance wavelength of a nanocavity by condensation of an inert gas onto the sample, which is held at cryogenic temperatures. The structural quality at the interfaces of epitaxially grown semiconductor heterostructures is investigated, and a growth instability is discovered which leads to roughness on the bottom of the GaAs slabs. Adjustment of MBE growth parameters leads to the elimination of this roughness, and the result is higher nanocavity quality factors. A number of methods for optimizing the fabrication of nanocavities is presented, which lead to higher quality factors. It is shown that some fundamental limiting factor, not yet fully understood, is preventing high quality factors at wavelengths shorter than 950 nm. Silicon 1D devices without active emitters are investigated by means of a tapered microfiber loop, and high quality factors are observed. This measurement technique is compared to a cross-polarized resonant scattering method. The quality factors observed in the silicon nanocavities are higher than those observed in GaAs, consistent with our observation that quality factors are in general higher at longer wavelengths.

Book Semiconductor Cavity Quantum Electrodynamics

Download or read book Semiconductor Cavity Quantum Electrodynamics written by Y. Yamamoto and published by Springer Science & Business Media. This book was released on 2000-09-27 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is the first to give a comprehensive account of the theory of semiconductor cavity quantum electrodynamics for such systems in the weak-coupling and strong-coupling regimes. It presents the important concepts, together with relevant, recent experimental results.

Book Investigations of a Coherently Driven Semiconductor Optical Cavity QED System

Download or read book Investigations of a Coherently Driven Semiconductor Optical Cavity QED System written by and published by . This book was released on 2008 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chip-based cavity quantum electrodynamics QED devices consisting of a self-assembled InAs quantum dot QD coupled to a high quality factor GaAs microdisk cavity are coherently probed through their optical channel using a fiber taper waveguide. We highlight one particularly important aspect of this all-fiber measurement setup, which is the accuracy to which the optical coupling level and optical losses are known relative to typical free-space excitation techniques. This allows for precise knowledge of the intracavity photon number and measurement of absolute transmitted and reflected signals. Resonant optical spectroscopy of the system under both weak and strong driving conditions are presented, which when compared with a quantum master equation model of the system allows for determination of the coherent coupling rate between QD exciton and optical cavity mode, the different levels of elastic and inelastic dephasing of the exciton state, and the position and orientation of the QD within the cavity. Pump-probe measurements are also performed in which a far off-resonant red-detuned control laser beam is introduced into the cavity. Rather than producing a measurable ac Stark shift in the exciton line of the QD, we find that this control beam induces a saturation of the resonant system response. The broad photoluminescence spectrum resulting from the presence of the control beam the cavity points to sub-band-gap absorption in the semiconductor, and the resulting free-carrier generation, as the likely source of system saturation.

Book Semiconductor Cavity Quantum Electrodynamics

Download or read book Semiconductor Cavity Quantum Electrodynamics written by Y. Yamamoto and published by Springer. This book was released on 2003-07-01 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is the first to give a comprehensive account of the theory of semiconductor cavity quantum electrodynamics for such systems in the weak-coupling and strong-coupling regimes. It presents the important concepts, together with relevant, recent experimental results.

Book Semiconductor Interfaces  Microstructures and Devices

Download or read book Semiconductor Interfaces Microstructures and Devices written by Zhe Chuan Feng and published by CRC Press. This book was released on 1993-01-01 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: A semiconductor interface is the contact between the semiconductor itself and a metal. The interface is a site of change, and it is imperative to ensure that the semiconducting material is sealed at this point to maintain its reliability. This book examines various aspects of interfaces, showing how they can affect microstructures and devices such as infrared photodetectors (as used in nightsights) and blue diode lasers. It presents various techniques for examining different types of semiconductor material and suggests future potential commercial applications for different semiconductor devices. Written by experts in their fields and focusing on metallic semiconductors (Cadmium Telluride and related compounds), this comprehensive overview of recent developments is an essential reference for those working in the semiconductor industry and provides a concise and comprehensive introduction to those new to the field.

Book Solid State Cavity Quantum Electrodynamics with Quantum Dots Coupled to Photonic Crystal Cavities

Download or read book Solid State Cavity Quantum Electrodynamics with Quantum Dots Coupled to Photonic Crystal Cavities written by Arka Majumdar and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum dots (QDs) coupled to optical cavities constitute a scalable, robust, on-chip, semiconductor platform for probing fundamental cavity quantum electrodynamics. Very strong interaction between light and matter can be achieved in this system as a result of the eld localization inside sub-cubic wavelength volumes leading to vacuum Rabi frequencies in the range of 10s of GHz. Such strong light-matter interaction produces an optical nonlinearity that is present even at single-photon level and is tunable at a very fast time-scale. This enables one to go beyond fundamental cavity quantum electrodynamics (CQED) studies and to employ such e ects for building practical information processing devices. My PhD work has focused on both fundamental physics of the coupled QD-nanocavity system, as well as on several proof-of-principle devices for low-power optical information processing based on this platform. We have demonstrated the e ects of photon blockade and photon-induced tunneling, which con rm the quantum nature of the coupled dot-cavity system. Using these e ects and the photon correlation measurements of light transmitted through the dot-cavity system, we identify the rst and second order energy manifolds of the Jaynes-Cummings ladder describing the strong coupling between the quantum dot and the cavity eld, and propose a new way to generate multi-Fock states with high purity. In addition, the interaction of the quantum dot with its semiconductor environment gives rise to novel phenomena unique to a solid state cavity QED system, namely phonon-mediated o -resonant dot-cavity coupling. We have employed this effect to perform cavity-assisted resonant quantum dot spectroscopy, which allows us to resolve frequency features far below the limit of a conventional spectrometer. Finally, the applications of such a coupled dot-cavity system in optical information processing including ultrafast, low power all-optical switching and electro-optic modulation are explored. With the light-matter interactions controlled at the most fundamental level, the nano-photonic devices we implemented on this platform operate at extremely low control powers and could achieve switching speeds potentially exceeding 10 GHz.

Book Technology of Quantum Devices

Download or read book Technology of Quantum Devices written by Manijeh Razeghi and published by Springer Science & Business Media. This book was released on 2009-12-11 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technology of Quantum Devices offers a multi-disciplinary overview of solid state physics, photonics and semiconductor growth and fabrication. Readers will find up-to-date coverage of compound semiconductors, crystal growth techniques, silicon and compound semiconductor device technology, in addition to intersubband and semiconductor lasers. Recent findings in quantum tunneling transport, quantum well intersubband photodetectors (QWIP) and quantum dot photodetectors (QWDIP) are described, along with a thorough set of sample problems.

Book Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures

Download or read book Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures written by Toshihide Takagahara and published by Academic Press. This book was released on 2003-02-10 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures

Book Semiconductor Photonics  Nano Structured Materials and Devices

Download or read book Semiconductor Photonics Nano Structured Materials and Devices written by Soo Jin Chua and published by Trans Tech Publications Ltd. This book was released on 2007-11-20 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume is indexed by Thomson Reuters CPCI-S (WoS). This book consists of a collection of 74 original peer-reviewed papers. They cover a wide range of topics in the interesting field of nano-structure related semiconductor photonics; a field which encompasses quantum dots, quantum wire, nano-wire, nano-rods, nano-crystals, photonic crystals, ZnO-based materials, III-V compound semiconductors, Si photonics and organic optoelectronic devices.

Book Quantum Semiconductor Devices and Technologies

Download or read book Quantum Semiconductor Devices and Technologies written by Tom Pearsall and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: stacked QD structure and is useful for examining the possibility of all optical measurement of stacked QD layers. Optical absorption spectra of self-assembled QDs has been little reported, and further investigation in necessary to study hole-burning memory. 2.5 Summary This chapter describes recent advances in quantum dot fabrication tech nologies, focusing on our self-formed quantum dot technologies including TSR quantum dots and SK-mode self-assembled quantum dots. As is described in this chapter, there are many possible device applications such as quantum dot tunneling memory devices, quantum dot fioating-dot gate FETs, quantum dot lasers, and quantum dot hole-burning memory devices. The quantum dot laser applications seem to be the most practicable among these applications. However, many problems remain to be solved before even this application becomes practical. The most important issue is to of self-assembled quantum dots more pre control the size and position cisely, with an accuracy on an atomic scale. The confinement must be enough to keep the separation energy between quantized energy levels high enough to get high-temperature characteristics. The lasing oscillation frequency should be fixed at 1.3 f.lITl or 1.5 f.lITl for optical communication. Phonon bottleneck problems should be solved by the optimization of device structures. Fortunately, there is much activity in the area of quantum dot lasers and, therefore, many breakthroughs will be made, along with the exploration of other new application areas.

Book Optical Microcavities

Download or read book Optical Microcavities written by Kerry Vahala and published by World Scientific. This book was released on 2004 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical microcavities are structures that enable confinement of light to microscale volumes. The universal importance of these structures has made them indispensable to a wide range of fields. This important book describes the many applications and the related physics, providing both a review and a tutorial of key subjects by leading researchers from each field. The topics include cavity QED and quantum information, nanophotonics and nanostructure interactions, wavelength switching and modulation in optical communications, optical chaos and biosensors.

Book Springer Handbook of Semiconductor Devices

Download or read book Springer Handbook of Semiconductor Devices written by Massimo Rudan and published by Springer Nature. This book was released on 2022-11-10 with total page 1680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.

Book Physics of Quantum Well Devices

Download or read book Physics of Quantum Well Devices written by B.R. Nag and published by Springer Science & Business Media. This book was released on 2001-11-30 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with the physics, operating principles and characteristics of the important quantum well devices, namely, the High Electron Mobility Transistor (HEMT), Resonant Tunneling Diode (RTD), Quantum Well Laser (QWL), Quantum Well Infrared Photodetector (QWIP), Modulator and Switch. The basic physical concepts on which these devices are based are discussed in detail with necessary diagrams and mathematical derivations. The growth of heterostructures, theories and experiments on band offset, theories and experimental results on electron states, optical interaction phenomena, and electron transport are discussed as the background material. Practical aspects and up-to-date developments and applications of the devices are also covered. This book will be of interest to researchers and specialists in the field of Solid State Technology, Optics and Optoelectronics. It can also serve as a textbook for graduate students and new entrants in the exciting field of quantum electronics. This book takes the reader from the introductory stage to the advanced level of the construction, principles of operation, and application of these devices.

Book Cavity Quantum Electrodynamics

Download or read book Cavity Quantum Electrodynamics written by Sergio M. Dutra and published by John Wiley & Sons. This book was released on 2005-05-27 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: What happens to light when it is trapped in a box? Cavity Quantum Electrodynamics addresses a fascinating question inphysics: what happens to light, and in particular to itsinteraction with matter, when it is trapped inside a box? With theaid of a model-building approach, readers discover the answer tothis question and come to appreciate its important applications incomputing, cryptography, quantum teleportation, andopto-electronics. Instead of taking a traditional approach thatrequires readers to first master a series of seemingly unconnectedmathematical techniques, this book engages the readers' interestand imagination by going straight to the point, introducing themathematics along the way as needed. Appendices are provided forthe additional mathematical theory. Researchers, scientists, and students of modern physics can referto Cavity Quantum Electrodynamics and examine the field thoroughly.Several key topics covered that readers cannot find in any otherquantum optics book include: * Introduction to the problem of the "vacuum catastrophe" and thecosmological constant * Detailed up-to-date account of cavity QED lasers andthresholdless lasing * Examination of cavities with movable walls * First-principles discussion about cavity QED in opencavities * Pedagogical account of microscopic quantization indielectrics Complementing the coverage of the most advanced theory andtechniques, the author provides context by discussing thehistorical evolution of the field and its discoveries. In thatspirit, "recommended reading," provided in each chapter, leadsreaders to both contemporary literature as well as key historicalpapers. Despite being one of many specialties within physics, cavityquantum electrodynamics serves as a window to many of thefundamental issues of physics. Cavity Quantum Electrodynamics willserve as an excellent resource for advanced undergraduate quantummechanics courses as well as for graduate students, researchers,and scientists who need a comprehensive introduction to the field.

Book Electron and Photon Confinement in Semiconductor Nanostructures

Download or read book Electron and Photon Confinement in Semiconductor Nanostructures written by Benoît Deveaud and published by IOS Press. This book was released on 2003 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this course was to give an overview of the physics of artificial semiconductor structures confining electrons and photons. It furnishes the background for several applications in particular in the domain of optical devices, lasers, light emitting diodes or photonic crystals. The effects related to the microactivity polaritons, which are mixed electromagnetic radiation-exciton states inside a semiconconductor microactivity are covered. The study of the characteristics of such states shows strong relations with the domain of cavity quantum electrodynamics and thus with the investigation of some fundamental theoretical concepts.