EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Nonparametric and Semiparametric Models

Download or read book Nonparametric and Semiparametric Models written by Wolfgang Karl Härdle and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.

Book Semiparametric Methods in Econometrics

Download or read book Semiparametric Methods in Econometrics written by Joel L. Horowitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many econometric models contain unknown functions as well as finite- dimensional parameters. Examples of such unknown functions are the distribution function of an unobserved random variable or a transformation of an observed variable. Econometric methods for estimating population parameters in the presence of unknown functions are called "semiparametric." During the past 15 years, much research has been carried out on semiparametric econometric models that are relevant to empirical economics. This book synthesizes the results that have been achieved for five important classes of models. The book is aimed at graduate students in econometrics and statistics as well as professionals who are not experts in semiparametic methods. The usefulness of the methods will be illustrated with applications that use real data.

Book Semiparametric Regression for the Social Sciences

Download or read book Semiparametric Regression for the Social Sciences written by Luke John Keele and published by John Wiley & Sons. This book was released on 2008-04-15 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory guide to smoothing techniques, semiparametric estimators, and their related methods, this book describes the methodology via a selection of carefully explained examples and data sets. It also demonstrates the potential of these techniques using detailed empirical examples drawn from the social and political sciences. Each chapter includes exercises and examples and there is a supplementary website containing all the datasets used, as well as computer code, allowing readers to replicate every analysis reported in the book. Includes software for implementing the methods in S-Plus and R.

Book Nonparametric and Semiparametric Methods in Econometrics and Statistics

Download or read book Nonparametric and Semiparametric Methods in Econometrics and Statistics written by William A. Barnett and published by Cambridge University Press. This book was released on 1991-06-28 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers from a 1988 symposium on the estimation and testing of models that impose relatively weak restrictions on the stochastic behaviour of data.

Book Nonlinear Mathematics for Uncertainty and its Applications

Download or read book Nonlinear Mathematics for Uncertainty and its Applications written by Shoumei Li and published by Springer Science & Business Media. This book was released on 2011-07-21 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of papers presented at the international conference on Nonlinear Mathematics for Uncertainty and Its Applications (NLMUA2011), held at Beijing University of Technology during the week of September 7--9, 2011. The conference brought together leading researchers and practitioners involved with all aspects of nonlinear mathematics for uncertainty and its applications. Over the last fifty years there have been many attempts in extending the theory of classical probability and statistical models to the generalized one which can cope with problems of inference and decision making when the model-related information is scarce, vague, ambiguous, or incomplete. Such attempts include the study of nonadditive measures and their integrals, imprecise probabilities and random sets, and their applications in information sciences, economics, finance, insurance, engineering, and social sciences. The book presents topics including nonadditive measures and nonlinear integrals, Choquet, Sugeno and other types of integrals, possibility theory, Dempster-Shafer theory, random sets, fuzzy random sets and related statistics, set-valued and fuzzy stochastic processes, imprecise probability theory and related statistical models, fuzzy mathematics, nonlinear functional analysis, information theory, mathematical finance and risk managements, decision making under various types of uncertainty, and others.

Book Recent Advances and Trends in Nonparametric Statistics

Download or read book Recent Advances and Trends in Nonparametric Statistics written by M.G. Akritas and published by Elsevier. This book was released on 2003-10-31 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of high-speed, affordable computers in the last two decades has given a new boost to the nonparametric way of thinking. Classical nonparametric procedures, such as function smoothing, suddenly lost their abstract flavour as they became practically implementable. In addition, many previously unthinkable possibilities became mainstream; prime examples include the bootstrap and resampling methods, wavelets and nonlinear smoothers, graphical methods, data mining, bioinformatics, as well as the more recent algorithmic approaches such as bagging and boosting. This volume is a collection of short articles - most of which having a review component - describing the state-of-the art of Nonparametric Statistics at the beginning of a new millennium. Key features: . algorithic approaches . wavelets and nonlinear smoothers . graphical methods and data mining . biostatistics and bioinformatics . bagging and boosting . support vector machines . resampling methods

Book Semiparametric Regression with R

Download or read book Semiparametric Regression with R written by Jaroslaw Harezlak and published by Springer. This book was released on 2018-12-12 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-follow applied book on semiparametric regression methods using R is intended to close the gap between the available methodology and its use in practice. Semiparametric regression has a large literature but much of it is geared towards data analysts who have advanced knowledge of statistical methods. While R now has a great deal of semiparametric regression functionality, many of these developments have not trickled down to rank-and-file statistical analysts. The authors assemble a broad range of semiparametric regression R analyses and put them in a form that is useful for applied researchers. There are chapters devoted to penalized spines, generalized additive models, grouped data, bivariate extensions of penalized spines, and spatial semi-parametric regression models. Where feasible, the R code is provided in the text, however the book is also accompanied by an external website complete with datasets and R code. Because of its flexibility, semiparametric regression has proven to be of great value with many applications in fields as diverse as astronomy, biology, medicine, economics, and finance. This book is intended for applied statistical analysts who have some familiarity with R.

Book Semiparametric Regression

Download or read book Semiparametric Regression written by David Ruppert and published by Cambridge University Press. This book was released on 2003-07-14 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiparametric regression is concerned with the flexible incorporation of non-linear functional relationships in regression analyses. Any application area that benefits from regression analysis can also benefit from semiparametric regression. Assuming only a basic familiarity with ordinary parametric regression, this user-friendly book explains the techniques and benefits of semiparametric regression in a concise and modular fashion. The authors make liberal use of graphics and examples plus case studies taken from environmental, financial, and other applications. They include practical advice on implementation and pointers to relevant software. The 2003 book is suitable as a textbook for students with little background in regression as well as a reference book for statistically oriented scientists such as biostatisticians, econometricians, quantitative social scientists, epidemiologists, with a good working knowledge of regression and the desire to begin using more flexible semiparametric models. Even experts on semiparametric regression should find something new here.

Book Environmental Soil Landscape Modeling

Download or read book Environmental Soil Landscape Modeling written by Sabine Grunwald and published by CRC Press. This book was released on 2016-04-19 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Environmental Soil-Landscape Modeling: Geographic Information Technologies and Pedometrics presents the latest methodological developments in soil-landscape modeling. It analyzes many recently developed measurement tools, and explains computer-related and pedometric techniques that are invaluable in the modeling process. This volume provi

Book Practical Nonparametric and Semiparametric Bayesian Statistics

Download or read book Practical Nonparametric and Semiparametric Bayesian Statistics written by Dipak D. Dey and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compilation of original articles by Bayesian experts, this volume presents perspectives on recent developments on nonparametric and semiparametric methods in Bayesian statistics. The articles discuss how to conceptualize and develop Bayesian models using rich classes of nonparametric and semiparametric methods, how to use modern computational tools to summarize inferences, and how to apply these methodologies through the analysis of case studies.

Book Time Series Analysis  Methods and Applications

Download or read book Time Series Analysis Methods and Applications written by Tata Subba Rao and published by Elsevier. This book was released on 2012-06-26 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Book Measurement of Productivity and Efficiency

Download or read book Measurement of Productivity and Efficiency written by Robin C. Sickles and published by Cambridge University Press. This book was released on 2019-03-28 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive approach to productivity and efficiency analysis using economic and econometric theory.

Book Model Selection and Model Averaging

Download or read book Model Selection and Model Averaging written by Gerda Claeskens and published by . This book was released on 2008-07-28 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: First book to synthesize the research and practice from the active field of model selection.

Book Highly Structured Stochastic Systems

Download or read book Highly Structured Stochastic Systems written by Peter J. Green and published by . This book was released on 2003 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through this text, the author aims to make recent developments in the title subject (a modern strategy for the creation of statistical models to solve 'real world' problems) accessible to graduate students and researchers in the field of statistics.

Book Semiparametric Theory and Missing Data

Download or read book Semiparametric Theory and Missing Data written by Anastasios Tsiatis and published by Springer Science & Business Media. This book was released on 2007-01-15 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes current knowledge regarding the theory of estimation for semiparametric models with missing data, in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.

Book Mendelian Randomization

Download or read book Mendelian Randomization written by Stephen Burgess and published by CRC Press. This book was released on 2015-03-06 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the Terminology and Methods of Mendelian Randomization for Epidemiological StudiesMendelian randomization uses genetic instrumental variables to make inferences about causal effects based on observational data. It, therefore, can be a reliable way of assessing the causal nature of risk factors, such as biomarkers, for a wide range of disea

Book Mixed Effects Models for Complex Data

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.