Download or read book Semantic Sentiment Analysis in Social Streams written by H. Saif and published by IOS Press. This book was released on 2017-06-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microblogs and social media platforms are now considered among the most popular forms of online communication. Through a platform like Twitter, much information reflecting people’s opinions and attitudes is published and shared among users on a daily basis. This has recently brought great opportunities to companies interested in tracking and monitoring the reputation of their brands and businesses, and to policy makers and politicians to support their assessment of public opinions about their policies or political issues. A wide range of approaches to sentiment analysis on social media, have been recently built. Most of these approaches rely mainly on the presence of affect words or syntactic structures that explicitly and unambiguously reflect sentiment. However, these approaches are semantically weak, that is, they do not account for the semantics of words when detecting their sentiment in text. In order to address this problem, the author investigates the role of word semantics in sentiment analysis of microblogs. Specifically, Twitter is used as a case study of microblogging platforms to investigate whether capturing the sentiment of words with respect to their semantics leads to more accurate sentiment analysis models on Twitter. To this end, the author proposes several approaches in this book for extracting and incorporating two types of word semantics for sentiment analysis: contextual semantics (i.e., semantics captured from words’ co-occurrences) and conceptual semantics (i.e., semantics extracted from external knowledge sources). Experiments are conducted with both types of semantics by assessing their impact in three popular sentiment analysis tasks on Twitter; entity-level sentiment analysis, tweet-level sentiment analysis and context-sensitive sentiment lexicon adaptation. The findings from this body of work demonstrate the value of using semantics in sentiment analysis on Twitter. The proposed approaches, which consider word semantics for sentiment analysis at both entity and tweet levels, surpass non-semantic approaches in most evaluation scenarios. This book will be of interest to students, researchers and practitioners in the semantic sentiment analysis field.
Download or read book Semantic Sentiment Analysis in Social Streams written by Hassan Saif and published by . This book was released on 2017 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Sentiment Analysis in Social Networks written by Federico Alberto Pozzi and published by Morgan Kaufmann. This book was released on 2016-10-06 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network analysis - Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network mining - Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics
Download or read book Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining written by Nitin Agarwal and published by Springer. This book was released on 2018-09-17 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributors in this book share, exchange, and develop new concepts, ideas, principles, and methodologies in order to advance and deepen our understanding of social networks in the new generation of Information and Communication Technologies (ICT) enabled by Web 2.0, also referred to as social media, to help policy-making. This interdisciplinary work provides a platform for researchers, practitioners, and graduate students from sociology, behavioral science, computer science, psychology, cultural studies, information systems, operations research and communication to share, exchange, learn, and develop new concepts, ideas, principles, and methodologies. Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining will be of interest to researchers, practitioners, and graduate students from the various disciplines listed above. The text facilitates the dissemination of investigations of the dynamics and structure of web based social networks. The book can be used as a reference text for advanced courses on Social Network Analysis, Sociology, Communication, Organization Theory, Cyber-anthropology, Cyber-diplomacy, and Information Technology and Justice.
Download or read book Engineering Background Knowledge for Social Robots written by L. Asprino and published by IOS Press. This book was released on 2020-09-25 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social robots are embodied agents that perform knowledge-intensive tasks involving several kinds of information from different heterogeneous sources. This book, Engineering Background Knowledge for Social Robots, introduces a component-based architecture for supporting the knowledge-intensive tasks performed by social robots. The design was based on the requirements of a real socially-assistive robotic application, and all the components contribute to and benefit from the knowledge base which is its cornerstone. The knowledge base is structured by a set of interconnected and modularized ontologies which model the information, and is initially populated with linguistic, ontological and factual knowledge retrieved from Linked Open Data. Access to the knowledge base is guaranteed by Lizard, a tool providing software components, with an API for accessing facts stored in the knowledge base in a programmatic and object-oriented way. The author introduces two methods for engineering the knowledge needed by robots, a novel method for automatically integrating knowledge from heterogeneous sources with a frame-driven approach, and a novel empirical method for assessing foundational distinctions over Linked Open Data entities from a common-sense perspective. These effectively enable the evolution of the robot’s knowledge by automatically integrating information derived from heterogeneous sources and the generation of common-sense knowledge using Linked Open Data as an empirical basis. The feasibility and benefits of the architecture have been assessed through a prototype deployed in a real socially-assistive scenario, and the book presents two applications and the results of a qualitative and quantitative evaluation.
Download or read book Strategies and Techniques for Federated Semantic Knowledge Integration and Retrieval written by D. Collarana and published by IOS Press. This book was released on 2020-01-24 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The vast amount of data available on the web has led to the need for effective retrieval techniques to transform that data into usable machine knowledge. But the creation of integrated knowledge, especially knowledge about the same entity from different web data sources, is a challenging task requiring the solving of interoperability problems. This book addresses the problem of knowledge retrieval and integration from heterogeneous web sources, and proposes a holistic semantic knowledge retrieval and integration approach to creating knowledge graphs on-demand from diverse web sources. Semantic Web Technologies have evolved as a novel approach to tackle the problem of knowledge integration from heterogeneous data, but because of the Extraction-Transformation-Load approach that dominates the process, knowledge retrieval and integration from web data sources is either expensive, or full physical integration of the data is impeded by restricted access. Focusing on the representation of data from web sources as pieces of knowledge belonging to the same entity which can then be synthesized as a knowledge graph helps to solve interoperability conflicts and allow for a more cost-effective integration approach, providing a method that enables the creation of valuable insights from heterogeneous web data. Empirical evaluations to assess the effectiveness of this holistic approach provide evidence that the methodology and techniques proposed in this book help to effectively integrate the disparate knowledge spread over heterogeneous web data sources, and the book also demonstrates how three domain applications of law enforcement, job market analysis, and manufacturing, have been developed and managed using the approach.
Download or read book Semantic Search for Novel Information written by M. Färber and published by IOS Press. This book was released on 2017-07-18 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, new approaches are presented for detecting and extracting simultaneously relevant and novel information from unstructured text documents. A major contribution of these approaches is that the information already provided and the extracted information are modeled semantically. This leads to the following benefits: (a) ambiguities in the language can be resolved; (b) the exact information needs regarding relevance and novelty can be specified; and (c) knowledge graphs can be incorporated. More specifically, this book presents the following scientific contributions: 1. An assessment of the suitability of existing large knowledge graphs (namely, DBpedia, Freebase, OpenCyc, Wikidata, and YAGO) for the task of detecting novel information in text documents. 2. A description of an approach by which emerging entities that are missing in a knowledge graph are detected in a stream of text documents. 3. A suggestion for an approach to extracting novel, relevant, semantically-structured statements from text documents. The developed approaches are suitable for the recommendation of emerging entities and novel statements respectively, for the purpose of knowledge graph population, and for providing assistance to users requiring novel information, such as journalists and technology scouts.
Download or read book Emerging Topics in Semantic Technologies written by E. Demidova and published by IOS Press. This book was released on 2018-10-12 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes a selection of thoroughly refereed papers accepted at the Satellite Events of the 17th Internal Semantic Web Conference, ISWC 2018, held in Monterey, CA in October 2018. The key areas addressed by these events include the core Semantic Web technologies such as knowledge graphs and scalable knowledge base systems, ontology design and modelling, semantic deep learning and statistics. Furthermore, several novel applications of semantic technologies to the topics of Internet of Things (IoT), healthcare, social media and social good are discussed. Finally, important topics at the interface of the Semantic Web technologies and their human users are addressed, including visualization and interaction paradigms for Web Data as well as crowdsourcing applications.
Download or read book Exploiting Semantic Web Knowledge Graphs in Data Mining written by P. Ristoski and published by IOS Press. This book was released on 2019-06-28 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in this field are knowledge intensive and can benefit from additional knowledge from various sources, so many approaches have been proposed that combine Semantic Web data with the data mining and knowledge discovery process. This book, Exploiting Semantic Web Knowledge Graphs in Data Mining, aims to show that Semantic Web knowledge graphs are useful for generating valuable data mining features that can be used in various data mining tasks. In Part I, Mining Semantic Web Knowledge Graphs, the author evaluates unsupervised feature generation strategies from types and relations in knowledge graphs used in different data mining tasks such as classification, regression, and outlier detection. Part II, Semantic Web Knowledge Graphs Embeddings, proposes an approach that circumvents the shortcomings introduced with the approaches in Part I, developing an approach that is able to embed complete Semantic Web knowledge graphs in a low dimensional feature space where each entity and relation in the knowledge graph is represented as a numerical vector. Finally, Part III, Applications of Semantic Web Knowledge Graphs, describes a list of applications that exploit Semantic Web knowledge graphs like classification and regression, showing that the approaches developed in Part I and Part II can be used in applications in various domains. The book will be of interest to all those working in the field of data mining and KDD.
Download or read book Identity of Long tail Entities in Text written by F. Ilievski and published by IOS Press. This book was released on 2019-11-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: The digital era has generated a huge amount of data on the identities (profiles) of people, organizations and other entities in a digital format, largely consisting of textual documents such as news articles, encyclopedias, personal websites, books, and social media. Identity has thus been transformed from a philosophical to a societal issue, one requiring robust computational tools to determine entity identity in text. Computational systems developed to establish identity in text often struggle with long-tail cases. This book investigates how Natural Language Processing (NLP) techniques for establishing the identity of long-tail entities – which are all infrequent in communication, hardly represented in knowledge bases, and potentially very ambiguous – can be improved through the use of background knowledge. Topics covered include: distinguishing tail entities from head entities; assessing whether current evaluation datasets and metrics are representative for long-tail cases; improving evaluation of long-tail cases; accessing and enriching knowledge on long-tail entities in the Linked Open Data cloud; and investigating the added value of background knowledge (“profiling”) models for establishing the identity of NIL entities. Providing novel insights into an under-explored and difficult NLP challenge, the book will be of interest to all those working in the field of entity identification in text.
Download or read book Emotions and Personality in Personalized Services written by Marko Tkalčič and published by Springer. This book was released on 2016-07-13 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Personalization is ubiquitous from search engines to online-shopping websites helping us find content more efficiently and this book focuses on the key developments that are shaping our daily online experiences. With advances in the detection of end users’ emotions, personality, sentiment and social signals, researchers and practitioners now have the tools to build a new generation of personalized systems that will really understand the user’s state and deliver the right content. With leading experts from a vast array of domains from user modeling, mobile sensing and information retrieval to artificial intelligence, human-computer interaction (HCI) social computing and psychology, a broad spectrum of topics are covered. From discussing psychological theoretical models and exploring state-of-the-art methods for acquiring emotions and personality in an unobtrusive way, as well as describing how these concepts can be used to improve various aspects of the personalization process and chapters that discuss evaluation and privacy issues. Emotions and Personality in Personalized Systems will help aid researchers and practitioners develop and evaluate user-centric personalization systems that take into account the factors that have a tremendous impact on our decision-making – emotions and personality.
Download or read book Study on Data Placement Strategies in Distributed RDF Stores written by D.D. Janke and published by IOS Press. This book was released on 2020-03-18 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The distributed setting of RDF stores in the cloud poses many challenges, including how to optimize data placement on the compute nodes to improve query performance. In this book, a novel benchmarking methodology is developed for data placement strategies; one that overcomes these limitations by using a data-placement-strategy-independent distributed RDF store to analyze the effect of the data placement strategies on query performance. Frequently used data placement strategies have been evaluated, and this evaluation challenges the commonly held belief that data placement strategies which emphasize local computation lead to faster query executions. Indeed, results indicate that queries with a high workload can be executed faster on hash-based data placement strategies than on, for example, minimal edge-cut covers. The analysis of additional measurements indicates that vertical parallelization (i.e., a well-distributed workload) may be more important than horizontal containment (i.e., minimal data transport) for efficient query processing. Two such data placement strategies are proposed: the first, found in the literature, is entitled overpartitioned minimal edge-cut cover, and the second is the newly developed molecule hash cover. Evaluation revealed a balanced query workload and a high horizontal containment, which lead to a high vertical parallelization. As a result, these strategies demonstrated better query performance than other frequently used data placement strategies. The book also tests the hypothesis that collocating small connected triple sets on the same compute node while balancing the amount of triples stored on the different compute nodes leads to a high vertical parallelization.
Download or read book Advances in Ontology Design and Patterns written by K. Hammar and published by IOS Press. This book was released on 2017-12-27 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of patterns in the context of ontology engineering for the semantic web was pioneered more than a decade ago by Blomqvist, Sandkuhl and Gangemi. Since then, this line of research has flourished and led to the development of ontology design patterns, knowledge patterns, and linked data patterns: the patterns as they are known by ontology designers, knowledge engineers, and linked data publishers, respectively. A key characteristic of those patterns is that they are modular and reusable solutions to recurrent problems in ontology engineering and linked data publishing. This book contains recent contributions which advance the state of the art on theory and use of ontology design patterns. The papers collected in this book cover a range of topics, from a method to instantiate content patterns, a proposal on how to document a content pattern, to a number of patterns emerging in ontology modeling in various situations.
Download or read book Query Processing over Graph structured Data on the Web written by M. Acosta Deibe and published by IOS Press. This book was released on 2018-10-12 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last years, Linked Data initiatives have encouraged the publication of large graph-structured datasets using the Resource Description Framework (RDF). Due to the constant growth of RDF data on the web, more flexible data management infrastructures must be able to efficiently and effectively exploit the vast amount of knowledge accessible on the web. This book presents flexible query processing strategies over RDF graphs on the web using the SPARQL query language. In this work, we show how query engines can change plans on-the-fly with adaptive techniques to cope with unpredictable conditions and to reduce execution time. Furthermore, this work investigates the application of crowdsourcing in query processing, where engines are able to contact humans to enhance the quality of query answers. The theoretical and empirical results presented in this book indicate that flexible techniques allow for querying RDF data sources efficiently and effectively.
Download or read book Mining Authoritativeness in Art Historical Photo Archives written by M. Daquino and published by IOS Press. This book was released on 2019-09-04 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the course of their research, art historians frequently need to refer to historical photo archives when attempting to authenticate works of art. This book, Mining Authoritativeness in Art Historical Photo Archives, provides an aid to retrieving relevant sources and assessing the textual authoritativeness – the internal grounds – of sources of attribution, and to evaluating the authoritativeness of cited scholars. The book aims to do three things: facilitate knowledge discovery in art historical photo archives, support users’ decision-making processes when evaluating contradictory attributions, and provide policies to improve the quality of information in art historical photo archives. The author’s approach is to leverage Semantic Web technologies in order to aggregate, assess, and recommend the most documented authorship attributions. At the same time, the retrieval process allows the providers of art historical data to define a low-cost data integration process with which to update and enrich their collection data. This conceptual framework for assessing questionable information will also be of value to those working in a number of other fields, such as archives, museums, and libraries, as well as to art historians.
Download or read book Knowledge Graphs for eXplainable Artificial Intelligence Foundations Applications and Challenges written by I. Tiddi and published by IOS Press. This book was released on 2020-05-06 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
Download or read book Neural Generation of Textual Summaries from Knowledge Base Triples written by P. Vougiouklis and published by IOS Press. This book was released on 2020-04-07 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most people need textual or visual interfaces to help them make sense of Semantic Web data. In this book, the author investigates the problems associated with generating natural language summaries for structured data encoded as triples using deep neural networks. An end-to-end trainable architecture is proposed, which encodes the information from a set of knowledge graph triples into a vector of fixed dimensionality, and generates a textual summary by conditioning the output on this encoded vector. Different methodologies for building the required data-to-text corpora are explored to train and evaluate the performance of the approach. Attention is first focused on generating biographies, and the author demonstrates that the technique is capable of scaling to domains with larger and more challenging vocabularies. The applicability of the technique for the generation of open-domain Wikipedia summaries in Arabic and Esperanto – two under-resourced languages – is then discussed, and a set of community studies, devised to measure the usability of the automatically generated content by Wikipedia readers and editors, is described. Finally, the book explains an extension of the original model with a pointer mechanism that enables it to learn to verbalise in a different number of ways the content from the triples while retaining the capacity to generate words from a fixed target vocabulary. The evaluation of performance using a dataset encompassing all of English Wikipedia is described, with results from both automatic and human evaluation both of which highlight the superiority of the latter approach as compared to the original architecture.