EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Knowledge Representation and the Semantics of Natural Language

Download or read book Knowledge Representation and the Semantics of Natural Language written by Hermann Helbig and published by Springer Science & Business Media. This book was released on 2005-12-19 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the pres- vation of cultural achievements and their transmission from one generation to the other. During the last few decades, the ?ood of digitalized information has been growing tremendously. This tendency will continue with the globali- tion of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical und- standing and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this c- text, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the g- eration of natural language expressions from formal representations. This book presents a method for the semantic representation of natural l- guage expressions (texts, sentences, phrases, etc. ) which can be used as a u- versal knowledge representation paradigm in the human sciences, like lingu- tics, cognitive psychology, or philosophy of language, as well as in com- tational linguistics and in arti?cial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.

Book Principles of Semantic Networks

Download or read book Principles of Semantic Networks written by John F. Sowa and published by Morgan Kaufmann. This book was released on 2014-07-10 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Semantic Networks: Explorations in the Representation of Knowledge provides information pertinent to the theory and applications of semantic networks. This book deals with issues in knowledge representation, which discusses theoretical topics independent of particular implementations. Organized into three parts encompassing 19 chapters, this book begins with an overview of semantic network structure for representing knowledge as a pattern of interconnected nodes and arcs. This text then analyzes the concepts of subsumption and taxonomy and synthesizes a framework that integrates many previous approaches and goes beyond them to provide an account of abstract and partially defines concepts. Other chapters consider formal analyses, which treat the methods of reasoning with semantic networks and their computational complexity. This book discusses as well encoding linguistic knowledge. The final chapter deals with a formal approach to knowledge representation that builds on ideas originating outside the artificial intelligence literature in research on foundations for programming languages. This book is a valuable resource for mathematicians.

Book Graph based Knowledge Representation

Download or read book Graph based Knowledge Representation written by Michel Chein and published by Springer Science & Business Media. This book was released on 2008-10-20 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a de?nition and study of a knowledge representation and r- soning formalism stemming from conceptual graphs, while focusing on the com- tational properties of this formalism. Knowledge can be symbolically represented in many ways. The knowledge representation and reasoning formalism presented here is a graph formalism – knowledge is represented by labeled graphs, in the graph theory sense, and r- soning mechanisms are based on graph operations, with graph homomorphism at the core. This formalism can thus be considered as related to semantic networks. Since their conception, semantic networks have faded out several times, but have always returned to the limelight. They faded mainly due to a lack of formal semantics and the limited reasoning tools proposed. They have, however, always rebounded - cause labeled graphs, schemas and drawings provide an intuitive and easily und- standable support to represent knowledge. This formalism has the visual qualities of any graphic model, and it is logically founded. This is a key feature because logics has been the foundation for knowledge representation and reasoning for millennia. The authors also focus substantially on computational facets of the presented formalism as they are interested in knowledge representation and reasoning formalisms upon which knowledge-based systems can be built to solve real problems. Since object structures are graphs, naturally graph homomorphism is the key underlying notion and, from a computational viewpoint, this moors calculus to combinatorics and to computer science domains in which the algorithmicqualitiesofgraphshavelongbeenstudied,asindatabasesandconstraint networks.

Book A Knowledge Representation Practionary

Download or read book A Knowledge Representation Practionary written by Michael K. Bergman and published by Springer. This book was released on 2018-12-12 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This major work on knowledge representation is based on the writings of Charles S. Peirce, a logician, scientist, and philosopher of the first rank at the beginning of the 20th century. This book follows Peirce's practical guidelines and universal categories in a structured approach to knowledge representation that captures differences in events, entities, relations, attributes, types, and concepts. Besides the ability to capture meaning and context, the Peircean approach is also well-suited to machine learning and knowledge-based artificial intelligence. Peirce is a founder of pragmatism, the uniquely American philosophy. Knowledge representation is shorthand for how to represent human symbolic information and knowledge to computers to solve complex questions. KR applications range from semantic technologies and knowledge management and machine learning to information integration, data interoperability, and natural language understanding. Knowledge representation is an essential foundation for knowledge-based AI. This book is structured into five parts. The first and last parts are bookends that first set the context and background and conclude with practical applications. The three main parts that are the meat of the approach first address the terminologies and grammar of knowledge representation, then building blocks for KR systems, and then design, build, test, and best practices in putting a system together. Throughout, the book refers to and leverages the open source KBpedia knowledge graph and its public knowledge bases, including Wikipedia and Wikidata. KBpedia is a ready baseline for users to bridge from and expand for their own domain needs and applications. It is built from the ground up to reflect Peircean principles. This book is one of timeless, practical guidelines for how to think about KR and to design knowledge management (KM) systems. The book is grounded bedrock for enterprise information and knowledge managers who are contemplating a new knowledge initiative. This book is an essential addition to theory and practice for KR and semantic technology and AI researchers and practitioners, who will benefit from Peirce's profound understanding of meaning and context.

Book Handbook of Research on Computational Intelligence Applications in Bioinformatics

Download or read book Handbook of Research on Computational Intelligence Applications in Bioinformatics written by Dash, Sujata and published by IGI Global. This book was released on 2016-06-20 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in the areas of biology and bioinformatics are continuously evolving and creating a plethora of data that needs to be analyzed and decrypted. Since it can be difficult to decipher the multitudes of data within these areas, new computational techniques and tools are being employed to assist researchers in their findings. The Handbook of Research on Computational Intelligence Applications in Bioinformatics examines emergent research in handling real-world problems through the application of various computation technologies and techniques. Featuring theoretical concepts and best practices in the areas of computational intelligence, artificial intelligence, big data, and bio-inspired computing, this publication is a critical reference source for graduate students, professionals, academics, and researchers.

Book Knowledge Representation and Reasoning

Download or read book Knowledge Representation and Reasoning written by Ronald Brachman and published by Morgan Kaufmann. This book was released on 2004-05-19 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge representation is at the very core of a radical idea for understanding intelligence. This book talks about the central concepts of knowledge representation developed over the years. It is suitable for researchers and practitioners in database management, information retrieval, object-oriented systems and artificial intelligence.

Book Multimedia and Sensory Input for Augmented  Mixed  and Virtual Reality

Download or read book Multimedia and Sensory Input for Augmented Mixed and Virtual Reality written by Tyagi, Amit Kumar and published by IGI Global. This book was released on 2021-01-08 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Augmented and virtual reality (AR and VR) offer exciting opportunities for human computer interaction (HCI), the enhancement of places, and new business cases. Though VR is most popular for video games, especially among younger generations, AR and VR can also be used in applications that include military, medical, navigational, tourism, marketing, and maintenance uses. Research in these technologies along with 3D user interfaces has gained momentum in recent years and has solidified it as a staple technology for the foreseeable future. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality includes a collection of business case studies covering a variety of topics related to AR, VR, and mixed reality (MR) including their use in possible applications. This book also touches on the diverse uses of AR and VR in many industries and discusses their importance, challenges, and opportunities. While discussing the use these technologies in sectors such as education, healthcare, and computer science, this book is ideal for computer scientists, engineers, practitioners, stakeholders, researchers, academicians, and students who are interested in the latest research on augmented, mixed, and virtual reality.

Book Representation Learning for Natural Language Processing

Download or read book Representation Learning for Natural Language Processing written by Zhiyuan Liu and published by Springer Nature. This book was released on 2020-07-03 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

Book Semantic Networks in Artificial Intelligence

Download or read book Semantic Networks in Artificial Intelligence written by Fritz W. Lehmann and published by Pergamon. This book was released on 1992 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardbound. Semantic Networks are graphic structures used to represent concepts and knowledge in computers. Key uses include natural language understanding, information retrieval, machine vision, object-oriented analysis and dynamic control of combat aircraft. This major collection addresses every level of reader interested in the field of knowledge representation. Easy to read surveys of the main research families, most written by the founders, are followed by 25 widely varied articles on semantic networks and the conceptual structure of the world. Some extend ideas of philosopher Charles S Peirce 100 years ahead of his time. Others show connections to databases, lattice theory, semiotics, real-world ontology, graph-grammers, lexicography, relational algebras, property inheritance and semantic primitives. Hundreds of pictures show semantic networks as a visual language of thought.

Book Representation and Understanding

Download or read book Representation and Understanding written by Jerry Bobrow and published by Elsevier. This book was released on 2014-06-28 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Representation and Understanding

Book Semantic Knowledge Representation for Information Retrieval

Download or read book Semantic Knowledge Representation for Information Retrieval written by Winfried Gödert and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-08-19 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve methods of formal knowledge representation and reasoning. The methodologies included combine the specifics of indexing languages, Web representation languages and intersystem relations, and explain their contribution to search functionalities in information retrieval scenarios. An example oriented discussion, considering aspects of conceptual and semantic interoperability in processes of subject querying and knowledge exploration is provided. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.

Book Handbook of Knowledge Representation

Download or read book Handbook of Knowledge Representation written by Frank van Harmelen and published by Elsevier. This book was released on 2008-01-08 with total page 1035 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily

Book Semantic Systems  The Power of AI and Knowledge Graphs

Download or read book Semantic Systems The Power of AI and Knowledge Graphs written by Maribel Acosta and published by Springer Nature. This book was released on 2019-11-04 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies.

Book Semantic Web Services

    Book Details:
  • Author : Rudi Studer
  • Publisher : Springer Science & Business Media
  • Release : 2007-05-23
  • ISBN : 3540708944
  • Pages : 402 pages

Download or read book Semantic Web Services written by Rudi Studer and published by Springer Science & Business Media. This book was released on 2007-05-23 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, Rudi Studer and his team deliver a self-contained compendium about the exciting field of Semantic Web services, starting with the basic standards and technologies and also including advanced applications in eGovernment and eHealth. The contributions provide both the theoretical background and the practical knowledge necessary to understand the essential ideas and to design new cutting-edge applications.

Book Statistical Machine Learning

Download or read book Statistical Machine Learning written by Richard Golden and published by CRC Press. This book was released on 2020-06-24 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.

Book The Semantic Representation of Natural Language

Download or read book The Semantic Representation of Natural Language written by Michael Levison and published by A&C Black. This book was released on 2012-12-20 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a detailed, precise and clear semantic formalism designed to allow non-programmers such as linguists and literary specialists to represent elements of meaning which they must deal with in their research and teaching. At the same time, by its basis in a functional programming paradigm, it retains sufficient formal precision to support computational implementation. The formalism is designed to represent meaning as found at a variety of levels, including basic semantic units and relations, word meaning, sentence-level phenomena, and text-level meaning. By drawing on fundamental principles of program design, the proposed formalism is both easy to read and modify yet sufficiently powerful to allow for the representation of complex semantic phenomena. In this monograph, the authors introduce the formalism and show its basic structure, apply it to the analysis of the semantics of a variety of linguistic phenomena in both English and French, and use it to represent the semantics of a variety of texts ranging from single sentences, to textual excepts, to a full story.

Book Prediction and Analysis for Knowledge Representation and Machine Learning

Download or read book Prediction and Analysis for Knowledge Representation and Machine Learning written by Avadhesh Kumar and published by CRC Press. This book was released on 2022-01-31 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: A number of approaches are being defined for statistics and machine learning. These approaches are used for the identification of the process of the system and the models created from the system’s perceived data, assisting scientists in the generation or refinement of current models. Machine learning is being studied extensively in science, particularly in bioinformatics, economics, social sciences, ecology, and climate science, but learning from data individually needs to be researched more for complex scenarios. Advanced knowledge representation approaches that can capture structural and process properties are necessary to provide meaningful knowledge to machine learning algorithms. It has a significant impact on comprehending difficult scientific problems. Prediction and Analysis for Knowledge Representation and Machine Learning demonstrates various knowledge representation and machine learning methodologies and architectures that will be active in the research field. The approaches are reviewed with real-life examples from a wide range of research topics. An understanding of a number of techniques and algorithms that are implemented in knowledge representation in machine learning is available through the book’s website. Features: Examines the representational adequacy of needed knowledge representation Manipulates inferential adequacy for knowledge representation in order to produce new knowledge derived from the original information Improves inferential and acquisition efficiency by applying automatic methods to acquire new knowledge Covers the major challenges, concerns, and breakthroughs in knowledge representation and machine learning using the most up-to-date technology Describes the ideas of knowledge representation and related technologies, as well as their applications, in order to help humankind become better and smarter This book serves as a reference book for researchers and practitioners who are working in the field of information technology and computer science in knowledge representation and machine learning for both basic and advanced concepts. Nowadays, it has become essential to develop adaptive, robust, scalable, and reliable applications and also design solutions for day-to-day problems. The edited book will be helpful for industry people and will also help beginners as well as high-level users for learning the latest things, which include both basic and advanced concepts.