Download or read book Pattern Recognition by Self organizing Neural Networks written by Gail A. Carpenter and published by MIT Press. This book was released on 1991 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pattern Recognition by Self-Organizing Neural Networks presentsthe most recent advances in an area of research that is becoming vitally important in the fields ofcognitive science, neuroscience, artificial intelligence, and neural networks in general. The 19articles take up developments in competitive learning and computational maps, adaptive resonancetheory, and specialized architectures and biological connections. Introductorysurvey articles provide a framework for understanding the many models involved in various approachesto studying neural networks. These are followed in Part 2 by articles that form the foundation formodels of competitive learning and computational mapping, and recent articles by Kohonen, applyingthem to problems in speech recognition, and by Hecht-Nielsen, applying them to problems in designingadaptive lookup tables. Articles in Part 3 focus on adaptive resonance theory (ART) networks,selforganizing pattern recognition systems whose top-down template feedback signals guarantee theirstable learning in response to arbitrary sequences of input patterns. In Part 4, articles describeembedding ART modules into larger architectures and provide experimental evidence fromneurophysiology, event-related potentials, and psychology that support the prediction that ARTmechanisms exist in the brain. Contributors: J.-P. Banquet, G.A. Carpenter, S.Grossberg, R. Hecht-Nielsen, T. Kohonen, B. Kosko, T.W. Ryan, N.A. Schmajuk, W. Singer, D. Stork, C.von der Malsburg, C.L. Winter.
Download or read book Self Organizing Neural Networks written by Udo Seiffert and published by Physica. This book was released on 2013-11-11 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Self-Organizing Map (SOM) is one of the most frequently used architectures for unsupervised artificial neural networks. Introduced by Teuvo Kohonen in the 1980s, SOMs have been developed as a very powerful method for visualization and unsupervised classification tasks by an active and innovative community of interna tional researchers. A number of extensions and modifications have been developed during the last two decades. The reason is surely not that the original algorithm was imperfect or inad equate. It is rather the universal applicability and easy handling of the SOM. Com pared to many other network paradigms, only a few parameters need to be arranged and thus also for a beginner the network leads to useful and reliable results. Never theless there is scope for improvements and sophisticated new developments as this book impressively demonstrates. The number of published applications utilizing the SOM appears to be unending. As the title of this book indicates, the reader will benefit from some of the latest the oretical developments and will become acquainted with a number of challenging real-world applications. Our aim in producing this book has been to provide an up to-date treatment of the field of self-organizing neural networks, which will be ac cessible to researchers, practitioners and graduated students from diverse disciplines in academics and industry. We are very grateful to the father of the SOMs, Professor Teuvo Kohonen for sup porting this book and contributing the first chapter.
Download or read book Self Organizing Maps written by Teuvo Kohonen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book we have at hand is the fourth monograph I wrote for Springer Verlag. The previous one named "Self-Organization and Associative Mem ory" (Springer Series in Information Sciences, Volume 8) came out in 1984. Since then the self-organizing neural-network algorithms called SOM and LVQ have become very popular, as can be seen from the many works re viewed in Chap. 9. The new results obtained in the past ten years or so have warranted a new monograph. Over these years I have also answered lots of questions; they have influenced the contents of the present book. I hope it would be of some interest and help to the readers if I now first very briefly describe the various phases that led to my present SOM research, and the reasons underlying each new step. I became interested in neural networks around 1960, but could not in terrupt my graduate studies in physics. After I was appointed Professor of Electronics in 1965, it still took some years to organize teaching at the uni versity. In 1968 - 69 I was on leave at the University of Washington, and D. Gabor had just published his convolution-correlation model of autoasso ciative memory. I noticed immediately that there was something not quite right about it: the capacity was very poor and the inherent noise and crosstalk were intolerable. In 1970 I therefore sugge~ted the auto associative correlation matrix memory model, at the same time as J.A. Anderson and K. Nakano.
Download or read book Information and Classification written by Otto Opitz and published by Springer Science & Business Media. This book was released on 2013-03-13 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many fields of science and practice large amounts of data and informationare collected for analyzing and visualizing latent structures as orderings or classifications for example. This volume presents refereed and revised versions of 52 papers selected from the contributions of the 16th AnnualConference of the "German Classification Society". The papers are organized in three major sections on Data Analysis and Classification (1), InformationRetrieval, Knowledge Processing and Software (2), Applications and Special Topics (3). Moreover, the papers were grouped and ordered within the major sections. So, in the first section we find papers on Classification Methods, Fuzzy Classification, Multidimensional Scaling, Discriminant Analysis and Conceptual Analysis. The second section contains papers on Neural Networks and Computational Linguisticsin addition to the mentioned fields. An essential part of the third section attends to Sequence Data and Tree Reconstruction as well as Data Analysis and Informatics in Medicine. As special topics the volume presents applications in Thesauri, Archaeology, Musical Science and Psychometrics.
Download or read book Neural Computation and Self organizing Maps written by Helge Ritter and published by Addison Wesley Publishing Company. This book was released on 1992 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Self organizing Map Formation written by Klaus Obermayer and published by MIT Press. This book was released on 2001 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of self-organizing map formation, including recent developments. Self-organizing maps form a branch of unsupervised learning, which is the study of what can be determined about the statistical properties of input data without explicit feedback from a teacher. The articles are drawn from the journal Neural Computation.The book consists of five sections. The first section looks at attempts to model the organization of cortical maps and at the theory and applications of the related artificial neural network algorithms. The second section analyzes topographic maps and their formation via objective functions. The third section discusses cortical maps of stimulus features. The fourth section discusses self-organizing maps for unsupervised data analysis. The fifth section discusses extensions of self-organizing maps, including two surprising applications of mapping algorithms to standard computer science problems: combinatorial optimization and sorting. Contributors J. J. Atick, H. G. Barrow, H. U. Bauer, C. M. Bishop, H. J. Bray, J. Bruske, J. M. L. Budd, M. Budinich, V. Cherkassky, J. Cowan, R. Durbin, E. Erwin, G. J. Goodhill, T. Graepel, D. Grier, S. Kaski, T. Kohonen, H. Lappalainen, Z. Li, J. Lin, R. Linsker, S. P. Luttrell, D. J. C. MacKay, K. D. Miller, G. Mitchison, F. Mulier, K. Obermayer, C. Piepenbrock, H. Ritter, K. Schulten, T. J. Sejnowski, S. Smirnakis, G. Sommer, M. Svensen, R. Szeliski, A. Utsugi, C. K. I. Williams, L. Wiskott, L. Xu, A. Yuille, J. Zhang
Download or read book Competition and Cooperation in Neural Nets written by S. Amari and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: The human brain, wi th its hundred billion or more neurons, is both one of the most complex systems known to man and one of the most important. The last decade has seen an explosion of experimental research on the brain, but little theory of neural networks beyond the study of electrical properties of membranes and small neural circuits. Nonetheless, a number of workers in Japan, the United States and elsewhere have begun to contribute to a theory which provides techniques of mathematical analysis and computer simulation to explore properties of neural systems containing immense numbers of neurons. Recently, it has been gradually recognized that rather independent studies of the dynamics of pattern recognition, pattern format::ion, motor control, self-organization, etc. , in neural systems do in fact make use of common methods. We find that a "competition and cooperation" type of interaction plays a fundamental role in parallel information processing in the brain. The present volume brings together 23 papers presented at a U. S. -Japan Joint Seminar on "Competition and Cooperation in Neural Nets" which was designed to catalyze better integration of theory and experiment in these areas. It was held in Kyoto, Japan, February 15-19, 1982, under the joint sponsorship of the U. S. National Science Foundation and the Japan Society for the Promotion of Science. Participants included brain theorists, neurophysiologists, mathematicians, computer scientists, and physicists. There are seven papers from the U. S.
Download or read book Computational Intelligence Systems in Industrial Engineering written by Cengiz Kahraman and published by Springer Science & Business Media. This book was released on 2012-11-05 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: Industrial engineering is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of production and service systems. Computational Intelligence Systems find a wide application area in industrial engineering: neural networks in forecasting, fuzzy sets in capital budgeting, ant colony optimization in scheduling, Simulated Annealing in optimization, etc. This book will include most of the application areas of industrial engineering through these computational intelligence systems. In the literature, there is no book including many real and practical applications of Computational Intelligence Systems from the point of view of Industrial Engineering. Every chapter will include explanatory and didactic applications. It is aimed that the book will be a main source for MSc and PhD students.
Download or read book Progress in Pattern Recognition Image Analysis and Applications written by Alberto Sanfeliu and published by Springer Science & Business Media. This book was released on 2004-10-15 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: First of all, we want to congratulate two new research communities from M- ico and Brazil that have recently joined the Iberoamerican community and the International Association for Pattern Recognition. We believe that the series of congresses that started as the “Taller Iberoamericano de Reconocimiento de Patrones (TIARP)”, and later became the “Iberoamerican Congress on Pattern Recognition (CIARP)”, has contributed to these groupconsolidatione?orts. We hope that in the near future all the Iberoamerican countries will have their own groups and associations to promote our areas of interest; and that these congresses will serve as the forum for scienti?c research exchange, sharing of - pertise and new knowledge, and establishing contacts that improve cooperation between research groups in pattern recognition and related areas. CIARP 2004 (9th Iberoamerican Congress on Pattern Recognition) was the ninthinaseriesofpioneeringcongressesonpatternrecognitionintheIberoam- ican community. As in the previous year, CIARP 2004 also included worldwide participation. It took place in Puebla, Mexico. The aim of the congress was to promote and disseminate ongoing research and mathematical methods for pattern recognition, image analysis, and applications in such diverse areas as computer vision, robotics, industry, health, entertainment, space exploration, telecommunications, data mining, document analysis,and natural languagep- cessing and recognition, to name a few.
Download or read book Artificial Neural Networks ICANN 96 written by Christoph von der Malsburg and published by Springer Science & Business Media. This book was released on 1996-07-10 with total page 956 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the sixth International Conference on Artificial Neural Networks - ICANN 96, held in Bochum, Germany in July 1996. The 145 papers included were carefully selected from numerous submissions on the basis of at least three reviews; also included are abstracts of the six invited plenary talks. All in all, the set of papers presented reflects the state of the art in the field of ANNs. Among the topics and areas covered are a broad spectrum of theoretical aspects, applications in various fields, sensory processing, cognitive science and AI, implementations, and neurobiology.
Download or read book Self Organizing Systems written by F.Eugene Yates and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological systems become organized by commands from outside, as when human intentions lead to the building of structures or machines. But many nat ural systems become structured by their own internal processes: these are the self organizing systems, and the emergence of order within them is a complex phe nomenon that intrigues scientists from all disciplines. Unfortunately, complexity is ill-defined. Global explanatory constructs, such as cybernetics or general sys tems theory, which were intended to cope with complexity, produced instead a grandiosity that has now, mercifully, run its course and died. Most of us have become wary of proposals for an "integrated, systems approach" to complex matters; yet we must come to grips with complexity some how. Now is a good time to reexamine complex systems to determine whether or not various scientific specialties can discover common principles or properties in them. If they do, then a fresh, multidisciplinary attack on the difficulties would be a valid scientific task. Believing that complexity is a proper scientific issue, and that self-organizing systems are the foremost example, R. Tomovic, Z. Damjanovic, and I arranged a conference (August 26-September 1, 1979) in Dubrovnik, Yugoslavia, to address self-organizing systems. We invited 30 participants from seven countries. Included were biologists, geologists, physicists, chemists, mathematicians, bio physicists, and control engineers. Participants were asked not to bring manu scripts, but, rather, to present positions on an assigned topic. Any writing would be done after the conference, when the writers could benefit from their experi ences there.
Download or read book Kohonen Maps written by E. Oja and published by Elsevier. This book was released on 1999-07-02 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Self-Organizing Map, or Kohonen Map, is one of the most widely used neural network algorithms, with thousands of applications covered in the literature. It was one of the strong underlying factors in the popularity of neural networks starting in the early 80's. Currently this method has been included in a large number of commercial and public domain software packages. In this book, top experts on the SOM method take a look at the state of the art and the future of this computing paradigm.The 30 chapters of this book cover the current status of SOM theory, such as connections of SOM to clustering, classification, probabilistic models, and energy functions. Many applications of the SOM are given, with data mining and exploratory data analysis the central topic, applied to large databases of financial data, medical data, free-form text documents, digital images, speech, and process measurements. Biological models related to the SOM are also discussed.
Download or read book Principles of Data Mining and Knowledge Discovery written by Jan Zytkow and published by Springer Science & Business Media. This book was released on 1999-09-01 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD'99, held in Prague, Czech Republic in September 1999. The 28 revised full papers and 48 poster presentations were carefully reviewed and selected from 106 full papers submitted. The papers are organized in topical sections on time series, applications, taxonomies and partitions, logic methods, distributed and multirelational databases, text mining and feature selection, rules and induction, and interesting and unusual issues.
Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Download or read book Applications of Self Organizing Maps written by Magnus Johnsson and published by BoD – Books on Demand. This book was released on 2012-11-21 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The self-organizing map, first described by the Finnish scientist Teuvo Kohonen, can by applied to a wide range of fields. This book is about such applications, i.e. how the original self-organizing map as well as variants and extensions of it can be applied in different fields. In fourteen chapters, a wide range of such applications is discussed. To name a few, these applications include the analysis of financial stability, the fault diagnosis of plants, the creation of well-composed heterogeneous teams and the application of the self-organizing map to the atmospheric sciences.
Download or read book Principles of Artificial Neural Networks written by Daniel Graupe and published by World Scientific. This book was released on 2013 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition OCo all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining."
Download or read book Handbook of Natural Computing written by Grzegorz Rozenberg and published by Springer. This book was released on 2012-07-09 with total page 2052 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.