Download or read book Directed Self assembly of Block Co polymers for Nano manufacturing written by Roel Gronheid and published by Woodhead Publishing. This book was released on 2015-07-17 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. - Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic - Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing - Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields
Download or read book Polymer Science A Comprehensive Reference written by and published by Newnes. This book was released on 2012-12-05 with total page 7752 pages. Available in PDF, EPUB and Kindle. Book excerpt: The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources. Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work Electronic version has complete cross-referencing and multi-media components Volume editors are world experts in their field (including a Nobel Prize winner)
Download or read book Polymer Thin Films written by Ophelia Kwan Chui Tsui and published by World Scientific. This book was released on 2008 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ch. 1. Block copolymer thin films / J.-Y. Wang, S. Park and T. P. Russell -- ch. 2. Equilibration of block copolymer films on chemically patterned surfaces / G. S. W. Craig, H. Kang and P. F. Nealey -- ch. 3. Structure formation and evolution in confined cylinder-forming block copolymers / G. J. A. Sevink and J. G. E. M. Fraaije -- ch. 4. Block copolymer lithography for magnetic device fabrication / J. Y. Cheng and C. A. Ross -- ch. 5. Hierarchical structuring of polymer nanoparticles by self-organization / M. Shimomura ... [et al.] -- ch. 6. Wrinkling polymers for surface structure control and functionality / E. P. Chan and A. J. Crosby -- ch. 7. Crystallization in polymer thin films: morphology and growth / R. M. Van Horn and S. Z. D. Cheng -- ch. 8. Friction at soft polymer surface / M. K. Chaudhury, K. Vorvolakos and D. Malotky -- ch. 9. Relationship between molecular architecture, large-strain mechanical response and adhesive performance of model, block copolymer-based pressure sensitive adhesives / C. Creton and K. R. Shull -- ch. 10. Stability and dewetting of thin liquid films / K. Jacobs, R. Seemann and S. Herminghaus -- ch. 11. Anomalous dynamics of polymer Films / O. K. C. Tsui.
Download or read book Points Lines and Walls written by Maurice Kléman and published by John Wiley & Sons. This book was released on 1983 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Exploring Materials through Patent Information written by David Segal and published by Royal Society of Chemistry. This book was released on 2015 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide for students on how to use patents as a source of information using different materials as case studies.
Download or read book Generating Micro and Nanopatterns on Polymeric Materials written by Aránzazu del Campo and published by John Wiley & Sons. This book was released on 2011-04-08 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: New micro and nanopatterning technologies have been developed in the last years as less costly and more flexible alternatives to phtolithograpic processing. These technologies have not only impacted on recent developments in microelectronics, but also in emerging fields such as disposable biosensors, scaffolds for tissue engineering, non-biofouling coatings, high adherence devices, or photonic structures for the visible spectrum. This handbook presents the current processing methods suitable for the fabrication of micro- and nanostructured surfaces made out of polymeric materials. It covers the steps and materials involved, the resulting structures, and is rounded off by a part on applications. As a result, chemists, material scientists, and physicists gain a critical understanding of this topic at an early stage of its development.
Download or read book Block Copolymers in Nanoscience written by Massimo Lazzari and published by John Wiley & Sons. This book was released on 2006-11-10 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book to take a detailed look at one of the key focal points where nanotechnology and polymers meet provides both an introductory view for beginners as well as in-depth knowledge for specialists in the various research areas involved. It investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.
Download or read book The Physics of Block Copolymers written by Ian W. Hamley and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nanoscale Magnetic Materials and Applications written by J. Ping Liu and published by Springer Science & Business Media. This book was released on 2010-04-05 with total page 731 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Magnetic Materials and Applications covers exciting new developments in the field of advanced magnetic materials. Readers will find valuable reviews of the current experimental and theoretical work on novel magnetic structures, nanocomposite magnets, spintronic materials, domain structure and domain-wall motion, in addition to nanoparticles and patterned magnetic recording media. Cutting-edge applications in the field are described by leading experts from academic and industrial communities. These include new devices based on domain wall motion, magnetic sensors derived from both giant and tunneling magnetoresistance, thin film devices in micro-electromechanical systems, and nanoparticle applications in biomedicine. In addition to providing an introduction to the advances in magnetic materials and applications at the nanoscale, this volume also presents emerging materials and phenomena, such as magnetocaloric and ferromagnetic shape memory materials, which motivate future development in this exciting field. Nanoscale Magnetic Materials and Applications also features a foreword written by Peter Grünberg, recipient of the 2007 Nobel Prize in Physics.
Download or read book Polymer Morphology written by Qipeng Guo and published by John Wiley & Sons. This book was released on 2016-03-21 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials
Download or read book Introduction to Microlithography written by L. F. Thompson and published by Academic. This book was released on 1994 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the theory, materials, and processes used in the lithographic process by which circuit elements are fabricated (it is these elements' decreasing size that has made possible the miniaturization of electronic devices). After a brief historical introduction, four major topics are discussed: the physics of the lithographic process, organic resist materials, resist processing, and plasma etching. The new edition reflects the many changes that have occurred since the 1983 publication of this tutorial/reference. Annotation copyright by Book News, Inc., Portland, OR
Download or read book Materials for the 21st Century written by David Segal and published by Oxford University Press. This book was released on 2017-05-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: What does cotton candy, which dissolves at the touch, have in common with Kevlar, used for bullet-proof vests? How can our understanding of such materials help us to tackle essential problems of the 21st century? Materials play a key role in our search for solutions to many pressing issues. They underpin many industries, are critical for the development of consumer goods, are essential components of medical diagnostic techniques, offer hope for the treatment of currently incurable diseases, and provide answers to environmental problems. This handbook is a guide to the materials we rely on for the future. Materials for the 21st Century serves as a useful resource for undergraduate and high school students preparing for a career in physical sciences, life sciences,or engineering, by helping them to identify new areas of interest. It is also an excellent reference for readers interested in learning more about the diverse range of materials that underlie key aspects of our economy and everyday lives.
Download or read book Block Copolymers II written by Volker Abetz and published by Springer Science & Business Media. This book was released on 2005-12-02 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: . A.J. M ller, V. Balsamo, M.L. Arnal: Nucleation and Crystallization in Diblock and Triblock Copolymers.- 2 J.-F. Gohy: Block Copolymer Micelles.- 3 M.A. Hillmyer: Nanoporous Materials from Block Copolymer Precursors.- 4 M. Li, C. Coenjarts, C.K. Ober: Patternable Block Copolymers.-
Download or read book Microlithography written by Bruce W. Smith and published by CRC Press. This book was released on 2020-05-01 with total page 913 pages. Available in PDF, EPUB and Kindle. Book excerpt: The completely revised Third Edition to the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from fundamental principles to advanced topics of nanoscale lithography. The book is divided into chapters covering all important aspects related to the imaging, materials, and processes that have been necessary to drive semiconductor lithography toward nanometer-scale generations. Renowned experts from the world’s leading academic and industrial organizations have provided in-depth coverage of the technologies involved in optical, deep-ultraviolet (DUV), immersion, multiple patterning, extreme ultraviolet (EUV), maskless, nanoimprint, and directed self-assembly lithography, together with comprehensive descriptions of the advanced materials and processes involved. New in the Third Edition In addition to the full revision of existing chapters, this new Third Edition features coverage of the technologies that have emerged over the past several years, including multiple patterning lithography, design for manufacturing, design process technology co-optimization, maskless lithography, and directed self-assembly. New advances in lithography modeling are covered as well as fully updated information detailing the new technologies, systems, materials, and processes for optical UV, DUV, immersion, and EUV lithography. The Third Edition of Microlithography: Science and Technology authoritatively covers the science and engineering involved in the latest generations of microlithography and looks ahead to the future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current technology, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to better understand the complex world of microlithography science and technology.
Download or read book Microfabrication of Stimuli Responsive Polymers written by Chuanliang Feng and published by Springer Nature. This book was released on 2021-03-08 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to interfacial reactions in confinement on stimuli-responsive homopolymer and diblock copolymer films. It also includes investigations concerning the immobilization of (bio)molecules and the fabrication of biomolecular patterns by reactive microcontact printing on these reactive polymer films. In turn, the book takes advantage of the microphase separation of diblock copolymer films to study the fabrication of nanopatterns, which could contribute to the future development of a model system that allows us to area-selectively deposit and address (bio)molecules. Given its scope, the book broadens readers’ perspective on the microfabrication of stimuli-responsive polymers.
Download or read book Evaporative Self assembly Of Ordered Complex Structures written by Zhiqun Lin and published by World Scientific. This book was released on 2012-02-28 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of spontaneous self-assembly, as a lithographic tool and as an external field-free means to construct well-ordered and intriguing patterns, has received much attention due to its ease of producing complex, large-scale structures with small feature sizes. An extremely simple route to highly-ordered, complex structures is the evaporative self-assembly of nonvolatile solutes (e.g., polymers, nanoparticles, carbon nanotubes, and DNA) from a sessile droplet on a solid substrate. To date, a few studies have elegantly demonstrated that self-organized nanoscale, microscale, and hierarchically structured patterns have been readily obtained from sophisticated control of droplet evaporation. These include convective assembly in evaporating menisci, the alignment of nanomaterials by programmed dip coating and controlled anisotrophic wetting/dewetting processes, facile microstructuring of functional polymers by the “Breath Figure” method, controlled evaporative self-assembly in confined geometries, etc.This book is unique in this regard in providing a wide spectrum of recent experimental and theoretical advances in evaporative self-assembly techniques. The ability to engineer an evaporative self-assembly process that yields a broad range of complex, well-ordered and intriguing structures with small feature sizes composed of polymers of nanocrystals of different size and shapes as well as DNA over large areas offers tremendous potential for applications in electronics, optoelectronics, photonics, sensors, information processing and data storage devices, nanotechnology, high-throughput drug discovery, chemical detection, combinatorical chemistry, and biotechnology.
Download or read book Nanocrystals Forming Mesoscopic Structures written by Marie-Paule Pileni and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on both academic questions and applications of self-assembly of this extremely important class of compounds, this book discusses not only the self-organization of inorganic and magnetic nanocrystals, but also their collective optical and magnetic properties, as well as the in-situ fabrication of metal nanoparticles in solid matrices. Professor Marie-Paule Pileni, a distinguished leader in this field, is joined by a select group of expert authors to provide 14 chapters covering important aspects of self-assembled nanomaterials. The result is invaluable reading for inorganic and physical chemists, colloid chemists, polymer chemists, materials scientists, physicists, and chemical engineers working with and/or developing nanoparticle systems.