EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Selectively Oxidized Patterned InP based Vertical Cavity Surface Emitting Lasers and VCSEL Arrays

Download or read book Selectively Oxidized Patterned InP based Vertical Cavity Surface Emitting Lasers and VCSEL Arrays written by Herte Gebretsadik and published by . This book was released on 1999 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the development of low loss optical fibers over 25 years ago, optical communications has become the system of choice for worldwide communication networks. Some of the many advantages over previous systems include: large transmission bandwidth, immunity to electromagnetic interference, low transmission loss, low weight, low power consumption, and relatively low cost. As multimedia services including the internet, cable television, high definition television (HDTV), and computer links become indispensable in our daily lives, large amounts of data must be transmitted through the information highway. This poses a serious challenge on the current communication network.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2000 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Selectively Oxidized Vertical cavity Laser Performance and Technology

Download or read book Selectively Oxidized Vertical cavity Laser Performance and Technology written by and published by . This book was released on 1998 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors discuss revolutionary performance advances in selectively oxidized vertical-cavity surface emitting lasers (VCSELs), which have enabled low operating power laser diodes appropriate for aerospace applications. Incorporating buried oxide layers converted from AIGaAs layers within the laser cavity produces enhanced optical and electrical confinement enabling superior laser performance, such as high efficiency and modulation bandwidth. VCSELs also shown to be viable over varied environmental conditions such as ambient temperature and ionized radiation. The development of novel VCSEL technologies for advanced system applications is also described. Two dimensional individually addressable VCSEL arrays exhibit uniform threshold and operating characteristics. Bottom emitting 850 nm VCSEL arrays fabricated using wafer fusion are also reported.

Book Optical Fiber Telecommunications VA

Download or read book Optical Fiber Telecommunications VA written by Tingye Li and published by Elsevier. This book was released on 2010-07-28 with total page 945 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical Fiber Telecommunications V (A&B) is the fifth in a series that has chronicled the progress in the research and development of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition not only brings a fresh look to many essential topics but also focuses on network management and services. Using high bandwidth in a cost-effective manner for the development of customer applications is a central theme. This book is ideal for R&D engineers and managers, optical systems implementers, university researchers and students, network operators, and the investment community. Volume (A) is devoted to components and subsystems, including: semiconductor lasers, modulators, photodetectors, integrated photonic circuits, photonic crystals, specialty fibers, polarization-mode dispersion, electronic signal processing, MEMS, nonlinear optical signal processing, and quantum information technologies. Volume (B) is devoted to systems and networks, including: advanced modulation formats, coherent systems, time-multiplexed systems, performance monitoring, reconfigurable add-drop multiplexers, Ethernet technologies, broadband access and services, metro networks, long-haul transmission, optical switching, microwave photonics, computer interconnections, and simulation tools. Biographical Sketches Ivan Kaminow retired from Bell Labs in 1996 after a 42-year career. He conducted seminal studies on electrooptic modulators and materials, Raman scattering in ferroelectrics, integrated optics, semiconductor lasers (DBR , ridge-waveguide InGaAsP and multi-frequency), birefringent optical fibers, and WDM networks. Later, he led research on WDM components (EDFAs, AWGs and fiber Fabry-Perot Filters), and on WDM local and wide area networks. He is a member of the National Academy of Engineering and a recipient of the IEEE/OSA John Tyndall, OSA Charles Townes and IEEE/LEOS Quantum Electronics Awards. Since 2004, he has been Adjunct Professor of Electrical Engineering at the University of California, Berkeley. Tingye Li retired from AT&T in 1998 after a 41-year career at Bell Labs and AT&T Labs. His seminal work on laser resonator modes is considered a classic. Since the late 1960s, He and his groups have conducted pioneering studies on lightwave technologies and systems. He led the work on amplified WDM transmission systems and championed their deployment for upgrading network capacity. He is a member of the National Academy of Engineering and a foreign member of the Chinese Academy of Engineering. He is a recipient of the IEEE David Sarnoff Award, IEEE/OSA John Tyndall Award, OSA Ives Medal/Quinn Endowment, AT&T Science and Technology Medal, and IEEE Photonics Award. Alan Willner has worked at AT&T Bell Labs and Bellcore, and he is Professor of Electrical Engineering at the University of Southern California. He received the NSF Presidential Faculty Fellows Award from the White House, Packard Foundation Fellowship, NSF National Young Investigator Award, Fulbright Foundation Senior Scholar, IEEE LEOS Distinguished Lecturer, and USC University-Wide Award for Excellence in Teaching. He is a Fellow of IEEE and OSA, and he has been President of the IEEE LEOS, Editor-in-Chief of the IEEE/OSA J. of Lightwave Technology, Editor-in-Chief of Optics Letters, Co-Chair of the OSA Science & Engineering Council, and General Co-Chair of the Conference on Lasers and Electro-Optics.

Book Optical Fiber Telecommunications VA

Download or read book Optical Fiber Telecommunications VA written by Tingye Li and published by Academic Press. This book was released on 2010-07-28 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical Fiber Telecommunications V (A&B) is the fifth in a series that has chronicled the progress in the research and development of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition not only brings a fresh look to many essential topics but also focuses on network management and services. Using high bandwidth in a cost-effective manner for the development of customer applications is a central theme. This book is ideal for R&D engineers and managers, optical systems implementers, university researchers and students, network operators, and the investment community. Volume (A) is devoted to components and subsystems, including: semiconductor lasers, modulators, photodetectors, integrated photonic circuits, photonic crystals, specialty fibers, polarization-mode dispersion, electronic signal processing, MEMS, nonlinear optical signal processing, and quantum information technologies. Volume (B) is devoted to systems and networks, including: advanced modulation formats, coherent systems, time-multiplexed systems, performance monitoring, reconfigurable add-drop multiplexers, Ethernet technologies, broadband access and services, metro networks, long-haul transmission, optical switching, microwave photonics, computer interconnections, and simulation tools. Biographical Sketches Ivan Kaminow retired from Bell Labs in 1996 after a 42-year career. He conducted seminal studies on electrooptic modulators and materials, Raman scattering in ferroelectrics, integrated optics, semiconductor lasers (DBR , ridge-waveguide InGaAsP and multi-frequency), birefringent optical fibers, and WDM networks. Later, he led research on WDM components (EDFAs, AWGs and fiber Fabry-Perot Filters), and on WDM local and wide area networks. He is a member of the National Academy of Engineering and a recipient of the IEEE/OSA John Tyndall, OSA Charles Townes and IEEE/LEOS Quantum Electronics Awards. Since 2004, he has been Adjunct Professor of Electrical Engineering at the University of California, Berkeley. Tingye Li retired from AT&T in 1998 after a 41-year career at Bell Labs and AT&T Labs. His seminal work on laser resonator modes is considered a classic. Since the late 1960s, He and his groups have conducted pioneering studies on lightwave technologies and systems. He led the work on amplified WDM transmission systems and championed their deployment for upgrading network capacity. He is a member of the National Academy of Engineering and a foreign member of the Chinese Academy of Engineering. He is a recipient of the IEEE David Sarnoff Award, IEEE/OSA John Tyndall Award, OSA Ives Medal/Quinn Endowment, AT&T Science and Technology Medal, and IEEE Photonics Award. Alan Willner has worked at AT&T Bell Labs and Bellcore, and he is Professor of Electrical Engineering at the University of Southern California. He received the NSF Presidential Faculty Fellows Award from the White House, Packard Foundation Fellowship, NSF National Young Investigator Award, Fulbright Foundation Senior Scholar, IEEE LEOS Distinguished Lecturer, and USC University-Wide Award for Excellence in Teaching. He is a Fellow of IEEE and OSA, and he has been President of the IEEE LEOS, Editor-in-Chief of the IEEE/OSA J. of Lightwave Technology, Editor-in-Chief of Optics Letters, Co-Chair of the OSA Science & Engineering Council, and General Co-Chair of the Conference on Lasers and Electro-Optics.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2692 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book InAlGaP Vertical Cavity Surface Emitting Lasers  VCSELs

Download or read book InAlGaP Vertical Cavity Surface Emitting Lasers VCSELs written by and published by . This book was released on 1997 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Al{sub y}Ga{sub 1-y}){sup 1-x}In(subscript x)P semiconductor alloys lattice-matched to GaAs are widely used in visible optoelectronic devices. One of the most recent developments in this area is the AlGaInP-based red vertical cavity surface emitting laser (VCSEL). These lasers, which employ AlGaInP active regions and AlGaAs distributed Bragg reflectors (DBRs), have demonstrated continuous-wave (CW) lasing over the 630--690 nm region of the spectrum. Applications for these lasers include plastic fiber data communications, laser printing and bar code scanning. In this paper, the authors present an overview of recent developments in the processing and performance of AlGaInP based VCSELs. This overview will include a review of the general heterostructure designs that have been employed, as well as the performance of lasers fabricated by both ion implantation and selective oxidation.

Book LEOS

    Book Details:
  • Author :
  • Publisher :
  • Release : 1997
  • ISBN :
  • Pages : 394 pages

Download or read book LEOS written by and published by . This book was released on 1997 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Single Transverse Mode Selectively Oxidized Vertical Cavity Lasers

Download or read book Single Transverse Mode Selectively Oxidized Vertical Cavity Lasers written by and published by . This book was released on 2000 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vertical cavity surface emitting lasers (VCSELs) which operate in multiple transverse optical modes have been rapidly adopted into present data communication applications which rely on multi-mode optical fiber. However, operation only in the fundamental mode is required for free space interconnects and numerous other emerging VCSEL applications. Two device design strategies for obtaining single mode lasing in VCSELs based on mode selective loss or mode selective gain are reviewed and compared. Mode discrimination is attained with the use of a thick tapered oxide aperture positioned at a longitudinal field null. Mode selective gain is achieved by defining a gain aperture within the VCSEL active region to preferentially support the fundamental mode. VCSELs which exhibit greater than 3 mW of single mode output power at 850 nm with mode suppression ratio greater than 30 dB are reported.

Book High Contrast Grating VCSELs

Download or read book High Contrast Grating VCSELs written by Christopher Chase and published by . This book was released on 2011 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vertical cavity surface emitting lasers (VCSELs) have become of large commercial importance over the last two decades. They have become the dominant low cost, low power coherent sources in many applications such as optical sensing and short distance data communication. Despite their great success, there remain opportunities for improvement. Almost all commercially produced VCSELs are fabricated on structures based on a GaAs substrate. This restricts their wavelength range to between 650 and 1300 nm. Many potential applications exist at wavelengths outside of this range, so much work has gone into realizing VCSELs on other substrates. Though they have been realized, this has typically come with complexity that increases cost of producing such VCSELs. Of particular interest are InP-based VCSELs, which allow for emission at the wavelengths of 1320 nm and 1550 nm, two regions of high importance for optical communications applications. Another area of much research has been improving the modal characteristics of VCSELs. Typical VCSELs will lase in two polarization-degenerate optical modes. In addition, due to their structure, lateral optical modes also appear when a typical VCSEL's aperture becomes more than a few microns in size, limiting their output power. For high performance optical communications and sensing, a single mode laser is essential, so solving these mode problems is important. Next generation optical communication systems also require sources with an array of lasers of multiple output wavelengths or a tunable wavelength source that can be quickly tuned over a wide range of wavelengths. Schemes for both approaches have been implemented on VCSELs though various limitations of the current approaches have prevented them of being of large commercial importance to date. Tunable VCSELs have been limited in wavelength tuning speed by the thickness of their movable mirror. A commercially viable approach for an array of VCSELs of multiple wavelengths has also been difficult to achieve - most approaches shown to date require complex growth methods and the have not been able to achieve controllable wavelength spacing. High contrast gratings (HCGs) have emerged as an exciting new tool for achieving optical features such as broadband mirrors, planar lenses, and high quality factor resonators. Of particular use for VCSELs is a broadband mirror. These high contrast gratings in addition to acting as a mirror have features that can be exploited for many applications such as polarization differentiation and definable phase among others. HCGs are an exciting new tool for many optical applications. In this dissertation, we show how a high contrast grating can potentially solve several of the issues facing VCSELs and open new application spaces for VCSELs. First, we introduce the state of the art in VCSEL research and give a detailed overview of major areas of interest in VCSEL research. Next, we introduce high contrast gratings, discuss their implementation onto VCSELs, and demonstrate how they can be used to achieve more ideal modal qualities in the VCSEL, a single polarization mode as well as a larger area single transverse mode device. Then we show how the high contrast grating can be used in a tunable VCSEL to achieve ultra high speed tuning. Following that discussion, we shift our focus to implementing high performance, low cost VCSELs on InP with an HCG, showing two different approaches: a deposited Si HCG sitting on SiO2 and a monolithically-grown InP HCG. We conclude with a discussion of two approaches to achieve controllable arrays of VCSELs emitting at multiple wavelengths. The high contrast grating may be an important tool to achieving higher performance VCSELs, and VCSELs with features that enable new applications.

Book Electrical   Electronics Abstracts

Download or read book Electrical Electronics Abstracts written by and published by . This book was released on 1997 with total page 2240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book InGaAsP InP Based 1 3 1 55 Micron Vertical Cavity Surface Emitting Lasers for Wavelength Division Multiplexed High Speed Distributed Computing  Phase 1

Download or read book InGaAsP InP Based 1 3 1 55 Micron Vertical Cavity Surface Emitting Lasers for Wavelength Division Multiplexed High Speed Distributed Computing Phase 1 written by M. K. Kilcoyne and published by . This book was released on 1993 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wavelength division multiplexed communication systems are becoming increasingly attractive for maximizing the data capacity of long range fiber optic links. Currently, distributed feedback (DFB) semiconductor lasers must be used due to the system requirements of precise single frequency lasers. The high cost of DFB lasers and associated control circuitry has made these systems too expensive for wide acceptance. In this research the possibility of using wavelength division multiplexed arrays of single 1.55 micron InGaAsP vertical cavity surface emitting lasers has been analyzed. The laser arrays have the potential to dramatically reduce the costs of sources compared with distributed feedback laser arrays. This research has focused on the technologies of wafer fusion, step etching and current constriction to develop designs that meet wavelength division multiplexed system requirements. Experiments and modeling has shown that 4x4 arrays of vertical cavity lasers spaced 2nm apart in wavelength are a realistic goal. The sixteen lasers would each be capable of launching single mode powers above lmw into a fiber at drive currents below 8mA. Vertical cavity lasers, Distributed computing, Wavelength division multiplexing, InGaAsP lasers.

Book Applied Nanophotonics

    Book Details:
  • Author : Hilmi Volkan Demir
  • Publisher : Cambridge University Press
  • Release : 2018-11-22
  • ISBN : 1107145503
  • Pages : 453 pages

Download or read book Applied Nanophotonics written by Hilmi Volkan Demir and published by Cambridge University Press. This book was released on 2018-11-22 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.

Book Semiconductor Laser Engineering  Reliability and Diagnostics

Download or read book Semiconductor Laser Engineering Reliability and Diagnostics written by Peter W. Epperlein and published by John Wiley & Sons. This book was released on 2013-03-18 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students. Dr. Peter W. Epperlein is Technology Consultant with his own semiconductor technology consulting business Pwe-PhotonicsElectronics-IssueResolution in the UK. He looks back at a thirty years career in cutting edge photonics and electronics industries with focus on emerging technologies, both in global and start-up companies, including IBM, Hewlett-Packard, Agilent Technologies, Philips/NXP, Essient Photonics and IBM/JDSU Laser Enterprise. He holds Pre-Dipl. (B.Sc.), Dipl. Phys. (M.Sc.) and Dr. rer. nat. (Ph.D.) degrees in physics, magna cum laude, from the University of Stuttgart, Germany. Dr. Epperlein is an internationally recognized expert in compound semiconductor and diode laser technologies. He has accomplished R&D in many device areas such as semiconductor lasers, LEDs, optical modulators, quantum well devices, resonant tunneling devices, FETs, and superconducting tunnel junctions and integrated circuits. His pioneering work on sophisticated diagnostic research has led to many world’s first reports and has been adopted by other researchers in academia and industry. He authored more than seventy peer-reviewed journal papers, published more than ten invention disclosures in the IBM Technical Disclosure Bulletin, has served as reviewer of numerous proposals for publication in technical journals, and has won five IBM Research Division Awards. His key achievements include the design and fabrication of high-power, highly reliable, single mode diode lasers. Book Reviews “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland The book “Semiconductor Laser Engineering, Reliability and Diagnostics” by Dr. P.W. Epperlein is a landmark in the recent literature on semiconductor lasers because it fills a longstanding gap between many excellent books on laser theory and the complex and challenging endeavor to fabricate these devices reproducibly and reliably in an industrial, real world environment. Having worked myself in the early research and development of high power semiconductor lasers, I appreciate the competent, complete and skillful presentation of these three highly interrelated topics, where small effects have dramatic consequences on the success of a final product, on the ultimate performance and on the stringent reliability requirements, which are the name of the game. As the title suggests the author addresses three tightly interwoven and critical topics of state-of-the-art power laser research. The three parts are: device and mode stability engineering (chapter 1, 2), reliability mechanisms and reliability assessment strategies (chapter 3, 4, 5, 6) and finally material and device diagnostics (chapter 7, 8, 9) all treated with a strong focus on the implementation. This emphasis on the complex practical aspects for a large-scale power laser fabrication is a true highlight of the book. The subtle interplay between laser design, reliability strategies, advanced failure analysis and characterization techniques are elaborated in a very rigorous and scientific way using a very clear and easy to read representation of the complex interrelation of the three major topics. I will abstain from trying to provide a complete account of all the topics but mainly concentrate on the numerous highlights. The first part 1 “Laser Engineering” is divided in two chapters on basic electronic-optical, structural, material and resonator laser engineering on the one side, and on single mode control and stability at very high, still reliable power-levels with the trade-off between mirror damage, single mode stability on the other side. To round up the picture less well-known concepts and the state-of-the-art of large-area lasers, which can be forced into single-mode operation, are reviewed carefully. The subtle and complex interplay, which is challenging to optimize for a design for reliability and low stress as a major boundary condition is crucial for the design. The section gives a rather complete and well-referenced account of all relevant aspects, relations and trade-offs for understanding the rest of the book. The completeness of the presentation on power laser diode design based on basic physical and plausible arguments is mainly based on analytic mathematical relations as well as experiments providing a new and well-balanced addition for the power diode laser literature in particular. Modern 2D self-consistent electro-optical laser modeling including carrier hole burning and thermal effects – this is important because the weak optical guiding and gain-discrimination depend critically on rather small quantities and effects, which are difficult to optimize experimentally – is used in the book for simulation results, but is not treated separately. The novel and really original, “gap-filling” bulk of the book is elaborated by the author in a very clear way in the following four chapters in the part 2 “Laser Reliability” on laser degradation physics and mirror design and passivation at high power, followed then by two very application oriented chapters on reliability design engineering and practical reliability strategies and implementation procedures. This original combination of integral design and reliability aspects – which are mostly neglected in standard literature – is certainly a major plus of this book. I liked this second section as a whole, because it provides excellent insights in degradation physics on a high level and combines it in an interesting and skillful way with the less “glamorous” (unfortunately) but highly relevant reliability science and testing strategies, which is particularly important for devices operating at extreme optical stresses with challenging lifetime requirements in a real word environment. Finally, the last part 3 “Laser Diagnostics” comprising three chapters, is devoted mainly to advanced experimental diagnostics techniques for material integrity, mechanical stress, deep level defects, various dynamic laser degradation effects, surface- and interface quality, and most importantly heating and disordering of mirrors and mirror coatings. The topics of characterization techniques comprising micro-Raman- and micro-thermoreflectance-probing, 2K photoluminescence spectroscopy, micro-electroluminescence and photoluminescence scanning, and deep-level-transient spectroscopy have been pioneered by the author for the specific applications over many years guaranteeing many competent and well represented insights. These techniques are brilliantly discussed and the information distributed in many articles by the author has been successfully unified in a book form. In my personal judgment and liking, I consider the parts 2 and 3 on reliability and diagnostics as the most valuable and true novel contribution of the book, which in combination with the extremely well-covered laser design of part 1 clearly fill the gap in the current diode laser literature, which in this detail has certainly been neglected in the past. In summary, I can highly recommend this excellent, well-organized and clearly written book to readers who are already familiar with basic diode laser theory and who are active in the academic and industrial fabrication and characterization of semiconductor lasers. Due to its completeness, it also serves as an excellent reference of the current state-of-the-art in reliability engineering and device and material diagnostics. Needless to mention that the quality of the book, its representations and methodical structure meet the highest expectation and are certainly a tribute from the long and broad experience of the author in academic laser science and the industrial commercialization of high power diode lasers. In my opinion, this book was a pleasure to read and due to its quality and relevance deserves a large audience in the power diode laser community! Prof. em. Dr. Heinz Jäckel, High Speed Electronics and Photonics, Swiss Federal Institute of Technology ETH Zürich, Switzerland June 16, 2013 ========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA This book covers for the first time the three closely interrelated key laser areas of engineering (design), reliability and diagnostics in one book, written by the well-known practitioner in cutting-edge optoelectronics industries, Dr. Peter W. Epperlein. The book closes the gap in the current book literature and is thus a unique and excellent example of how to merge design, reliability and diagnostics aspects in a very professional, profound and complete manner. All physical and technological principles, concepts and practical aspects required for developing and fabricating highly-reliable high-power single-mode laser products are precisely specified and skilfully formulated along with all the necessary equations, figures, tables and worked-out examples making it easy to follow through the nine chapters. Hence, this unique book is a milestone in the diode laser literature and is an excellent reference book not only for diode laser researchers and engineers, but also diode laser users. The engineering part starts with a very informative and clear, well-presented account of all necessary basic diode laser types, principles, parameters and characteristics for an easy and quick understanding of laser functionality within the context of the book. Along with an elaborate and broad discussion of relevant laser material systems, applications, typical output powers, power-limiting factors and reliability tradeoffs, basic fabrication and packaging technologies, this excellent introductory section is well suited to become quickly and easily familiar with practical aspects and issues of diode laser technologies. Of special importance and high usefulness is the first analytic and quantitative discussion in a book on issues of coupling laser power into optical single mode fibers. The second section discusses in a well-balanced, competent and skilful way waveguide topics such as basic high-power design approaches, transverse vertical and lateral waveguide concepts, stability of the fundamental transverse lateral mode and fundamental mode waveguide optimization techniques by considering detrimental effects such as heating, carrier injection, spatial hole burning, lateral current spreading and gain profile variations. Less well-known approaches to force large-area lasers into a single mode operation are well-identified and carefully discussed in depth and breadth. All these topics are elaborated in a very complete, rigorous and scientific way and are clearly articulated and easy to read. In particular, the book works out the complex interaction between the many different effects to optimize high-power single-mode performance at ultimate reliability and thus is of great benefit to every researcher and engineer engaged in this diode laser field. Another novelty and highlight is, for the first time ever in book form, a comprehensive yet concise discussion of diode laser reliability related issues. These are elaborated in four distinct chapters comprising laser degradation physics and modes, optical strength enhancement approaches including mirror passivation/coating and non-absorbing mirror technologies, followed by two highly relevant product-oriented chapters on reliability design engineering concepts and techniques and an elaborate reliability test plan for laser chip and module product qualification. This original and novel approach to link laser design to reliability aspects and requirements provides both, most useful insight into degradation processes such as catastrophic optical mirror damage on a microscopic scale, and a wide selection of effective remedial actions. These accounts, which are of highest significance for lasers operating at the optical stress limit due to extremely high output power densities and most demanding lifetime requirements are very professionally prepared and discussed in an interesting, coherent and skilful manner. The diagnostics part, consisting of three very elaborate chapters, is most unique and novel with respect to other diode laser books. It discusses for the first time ever on a very high level and in a competent way studies on material integrity, impurity trapping effects, mirror and cavity temperatures, surface- and interface quality, mirror facet disorder effects, mechanical stress and facet coating instability, and diverse laser temperature effects, dynamic laser degradation effects and mirror temperature maps. Of highest significance to design, performance and reliability are the various correlations established between laser device and material parameters. The most different and sophisticated experiments, carried out by the author at micrometer spatial resolutions and at temperatures as low as 2K, provide highly valuable insights into laser and material quality parameters, and reveal for the first time the origins of high power limitations on an atomic scale due to local heating effects and deep level defects. It is of great benefit, that the experimental techniques such as Raman spectroscopy, various luminescence techniques, thermoreflectance and deep-level transient spectroscopy, pioneered by the author for the specific experiments on lasers, are discussed with great expertise in depth and breadth, and the numerous paper articles published by the author are now represented in this book. The book has an elaborate table of contents and index, which are very useful, over 200 illustrative figures and tables, and extensive lists of references to all technical topics at the end of each of the nine chapters, which make it easy to follow from cover to cover or by jumping in at random areas of special interest. Moreover, experimental and theoretical concepts are always illustrated by practical examples and data. I can highly recommend this extremely relevant, well-structured and well-formulated book to all practising researchers in industrial and academic diode laser R&D environments and to post-graduate engineering students interested in the actual problems of designing, manufacturing, testing, characterising and qualifying diode lasers. Due to its completeness and novel approach to combine design, reliability and diagnostics in the same book, it can serve as an ideal reference book as well, and it deserves to be welcomed wordwide by the addressed audience. Dr. Chung-en Zah, Research Director, Semiconductor Technologies Research, S&T Division, Corning Incorporate, Corning NY, USA =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Cordinatore Prof. Lorenzo Pavesi, UNIVERSITÀ DEGLI STUDI DI TRENTO, Dipartimento di Fisica / Laboratorio di Nanoscienze This book represents a well thought description of three fundamental aspects of laser technology: the functioning principles, the reliability and the diagnostics. From this point of view, and, as far as I know, this is a unique example of a book where all these aspects are merged together resulting in a well-balanced presentation. This helps the reader to move with ease between different concepts since they are presented in a coherent manner and with the same terminology, symbols and definitions. The book reads well. Despite the subtitle indicates that it is a practical approach, the book is also correct from a formal point of view and presents the necessary equations and derivations to understand both the physical mechanisms and the practicalities via a set of useful formulas. In addition, there is the more important aspect of many real-life examples of how a laser is actually manufactured and which the relevant parameters that determine its behaviour are. It impresses the amounts of information that are given in the book: this would be more typical of a thick handbook on semiconductor laser than of an agile book. Dr. Epperlein was able to identify the most important concepts and to present them in a clear though concise way. I am teaching a course on Optoelectronics and I'm going to advise students to refer to this book, because it has all the necessary concepts and derivations for a systematic understanding of semiconductor lasers with many worked-out examples, which will help the student to grasp the actual problems of designing, manufacturing, testing and using semiconductor lasers. All the various concepts are joined to very useful figures, which, if provided to instructors as files, can be a useful add-on for the use of the book as text for teaching. Concepts are always detailed with numbers to give a feeling of their practical use. In conclusion, I do find the book suitable for my teaching duties and will refer it to my students. Prof. Dr. Lorenzo Pavesi, Head of the Department of Physics, Head of the Nanoscience Laboratory, University of Trento, Italy 31 May 2013 =========================================== “Semiconductor Laser Engineering, Reliability and Diagnostics: A Practical Approach to High Power and Single Mode Devices”. By Peter W. Epperlein Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA Dr. Epperlein has done the semiconductor laser community a great service, by releasing the most complete book on the market on the practical issues of how to make reliable semiconductor lasers. While dozens of books have been written over the past couple of decades on semiconductor laser design, only a handful have been written on semiconductor laser reliability. Prior to the release of this book, perhaps 40% of the material could be obtained elsewhere by combining five books: one on laser design, one on laser reliability, one on reliability calculations, and a couple of laser review books. Another 40% could be pieced together by collecting 50 -100 papers on the subjects of laser design, laser fabrication, characterization, and reliability. The remaining 20% have not previously been covered in any comprehensive way. Only the introductory material in the first half of the first chapter has good coverage elsewhere. The large majority of the knowledge in this book is generally held as “trade secret” by those with the expertise in the field, and most of those in the know are not free to discuss. The author was fortunate enough to work for the first half of his career in the IBM research labs, with access to unparalleled resources, and the ability to publish his work without trade secret restrictions. The results are still at the cutting edge of our understanding of semiconductor laser reliability today, and go well beyond the empirical “black box” approach many use of “try everything, and see what works.” The author did a fine job of pulling together material from many disparate fields. Dr. Epperlein has particular expertise in high power single mode semiconductor lasers, and those working on those type of lasers will be especially interested in this book, as there has never been a book published on the fabrication and qualification of such lasers before. But those in almost any field of semiconductor lasers will learn items of interest about device design, fabrication, reliability, and characterization. Unlike most other books, which intend to convey the scientific findings or past work of the author, this one is written more as a “how to” manual, which should make it more accessible and useful to development engineers and researchers in the field. It also has over 200 figures, which make it easier to follow. As with many books of this type, it is not necessary to read it from cover-to-cover; it is best skimmed, with deep diving into any areas of special interest to the reader. The book is remarkable also for how comprehensive it is – even experts will discover something new and useful. Dr. Epperlein’s book is an essential read for anyone looking to develop semiconductor lasers for anything other than pure research use, and I give it my highest recommendation. Robert W. Herrick, Ph.D., Senior Component Reliability Engineer, Intel Corp., Santa Clara, California, USA

Book Applied Science   Technology Index

Download or read book Applied Science Technology Index written by and published by . This book was released on 2000 with total page 1688 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Highly Uniform and Reproducible Visible to Near infrared Vertical cavity Surface emitting Lasers Grown by MOVPE

Download or read book Highly Uniform and Reproducible Visible to Near infrared Vertical cavity Surface emitting Lasers Grown by MOVPE written by and published by . This book was released on 1997 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors present the growth and characterization of vertical-cavity surface emitting lasers (VCSELs) from visible to near-infrared wavelength grown by metalorganic vapor phase epitaxy. Discussions on the growth issue of VCSEL materials include the control on growth rate and composition using an in situ normal-incidence reflectometer, optimization of ultra-high material uniformity, and comprehensive p- and n-type doping study in AlGaAs by CCl4 and Si2H6 over the entire Al composition range. They will also demonstrate the recent achievements of selectively-oxidized VCSELs which include the first room-temperature continuous-wave demonstration of all-AlGaAs 700-nm red VCSELs, high-performance n-side up 850-nm VCSELs, and low threshold current and low-threshold voltage 1.06 [mu]m VCSELs using InGaAs/GaAsP strain-compensated quantum wells.