Download or read book Calculus of Variations written by Charles R. MacCluer and published by Courier Corporation. This book was released on 2013-05-20 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: First truly up-to-date treatment offers a simple introduction to optimal control, linear-quadratic control design, and more. Broad perspective features numerous exercises, hints, outlines, and appendixes, including a practical discussion of MATLAB. 2005 edition.
Download or read book Selected Chapters in the Calculus of Variations written by Jürgen Moser and published by Birkhauser. This book was released on 2003-01-01 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: "These lecture notes describe the Aubry-Mather-Theory within the calculus of variations. The text consists of the translated original lectures of Jurgen Moser and a bibliographic appendix with comments on the current state-of-the-art in this field of interest. Students will find a rapid introduction to the calculus of variations, leading to modern dynamical systems theory. Differential geometric applications are discussed, in particular billiards and minimal geodesics on the two-dimensional torus. Many exercises and open questions make this book a valuable resource for both teaching and research."--BOOK JACKET.
Download or read book Calculus of Variations written by I. M. Gelfand and published by Courier Corporation. This book was released on 2012-04-26 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fresh, lively text serves as a modern introduction to the subject, with applications to the mechanics of systems with a finite number of degrees of freedom. Ideal for math and physics students.
Download or read book Introduction to the Calculus of Variations written by Hans Sagan and published by Courier Corporation. This book was released on 2012-04-26 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough understanding of calculus of variations and prepares readers for the study of modern optimal control theory. Selected variational problems and over 400 exercises. Bibliography. 1969 edition.
Download or read book A First Course in the Calculus of Variations written by Mark Kot and published by American Mathematical Society. This book was released on 2014-10-06 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.
Download or read book The Inverse Problem of the Calculus of Variations written by Dmitry V. Zenkov and published by Springer. This book was released on 2015-10-15 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the present book is to give a systematic treatment of the inverse problem of the calculus of variations, i.e. how to recognize whether a system of differential equations can be treated as a system for extremals of a variational functional (the Euler-Lagrange equations), using contemporary geometric methods. Selected applications in geometry, physics, optimal control, and general relativity are also considered. The book includes the following chapters: - Helmholtz conditions and the method of controlled Lagrangians (Bloch, Krupka, Zenkov) - The Sonin-Douglas's problem (Krupka) - Inverse variational problem and symmetry in action: The Ostrogradskyj relativistic third order dynamics (Matsyuk.) - Source forms and their variational completion (Voicu) - First-order variational sequences and the inverse problem of the calculus of variations (Urban, Volna) - The inverse problem of the calculus of variations on Grassmann fibrations (Urban).
Download or read book The Calculus of Variations and Functional Analysis written by L. P. Lebedev and published by World Scientific. This book was released on 2003 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is aimed at those who are concerned about Chinese medicine - how it works, what its current state is and, most important, how to make full use of it. The audience therefore includes clinicians who want to serve their patients better and patients who are eager to supplement their own conventional treatment. The authors of the book belong to three different fields, modern medicine, Chinese medicine and pharmacology. They provide information from their areas of expertise and concern, attempting to make it comprehensive for users. The approach is macroscopic and philosophical; readers convinced of the philosophy are to seek specific assistance.
Download or read book An Introduction to the Calculus of Variations written by and published by . This book was released on 1950 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Primer on the Calculus of Variations and Optimal Control Theory written by Mike Mesterton-Gibbons and published by American Mathematical Soc.. This book was released on 2009 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.
Download or read book Functional Analysis Calculus of Variations and Optimal Control written by Francis Clarke and published by Springer Science & Business Media. This book was released on 2013-02-06 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Download or read book Classical Mechanics with Calculus of Variations and Optimal Control written by Mark Levi and published by American Mathematical Soc.. This book was released on 2014-03-07 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an intuitively motivated presentation of many topics in classical mechanics and related areas of control theory and calculus of variations. All topics throughout the book are treated with zero tolerance for unrevealing definitions and for proofs which leave the reader in the dark. Some areas of particular interest are: an extremely short derivation of the ellipticity of planetary orbits; a statement and an explanation of the "tennis racket paradox"; a heuristic explanation (and a rigorous treatment) of the gyroscopic effect; a revealing equivalence between the dynamics of a particle and statics of a spring; a short geometrical explanation of Pontryagin's Maximum Principle, and more. In the last chapter, aimed at more advanced readers, the Hamiltonian and the momentum are compared to forces in a certain static problem. This gives a palpable physical meaning to some seemingly abstract concepts and theorems. With minimal prerequisites consisting of basic calculus and basic undergraduate physics, this book is suitable for courses from an undergraduate to a beginning graduate level, and for a mixed audience of mathematics, physics and engineering students. Much of the enjoyment of the subject lies in solving almost 200 problems in this book.
Download or read book Advanced Calculus of Several Variables written by C. H. Edwards and published by Academic Press. This book was released on 2014-05-10 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.
Download or read book Advanced Calculus Revised Edition written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Download or read book Calculus of Variations and Partial Differential Equations written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the summer school in Pisa in September 1996, Luigi Ambrosio and Norman Dancer each gave a course on the geometric problem of evolution of a surface by mean curvature, and degree theory with applications to PDEs respectively. This self-contained presentation accessible to PhD students bridged the gap between standard courses and advanced research on these topics. The resulting book is divided accordingly into 2 parts, and neatly illustrates the 2-way interaction of problems and methods. Each of the courses is augmented and complemented by additional short chapters by other authors describing current research problems and results.
Download or read book Calculus of Variations With Applications to Physics and Engineering written by Robert Weinstock and published by Weinstock Press. This book was released on 2007-03 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is in two sections. the first part dealing with, background material, basic theorems and isoperimetric problems. The second part devoted to applications, geometrical optics, particle dynamics, he theory of elasticity, electrostatics, quantum mechanics and much more. Many of the earliest books, particularly those dating back to the 1900s and before, are now extremely scarce and increasingly expensive. We are republishing these classic works in affordable, high quality, modern editions, using the original text and artwork.
Download or read book The Calculus of Variations in the Large written by Marston Morse and published by American Mathematical Soc.. This book was released on 1934-12-31 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Morse theory is a study of deep connections between analysis and topology. In its classical form, it provides a relationship between the critical points of certain smooth functions on a manifold and the topology of the manifold. It has been used by geometers, topologists, physicists, and others as a remarkably effective tool to study manifolds. In the 1980s and 1990s, Morse theory was extended to infinite dimensions with great success. This book is Morse's own exposition of his ideas. It has been called one of the most important and influential mathematical works of the twentieth century. Calculus of Variations in the Large is certainly one of the essential references on Morse theory.
Download or read book Calculus of Variations and Optimal Control Theory written by Daniel Liberzon and published by Princeton University Press. This book was released on 2012 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control