EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Seismic Soil Foundation Structure Interaction in Urban Environments

Download or read book Seismic Soil Foundation Structure Interaction in Urban Environments written by Nicholas Wade Trombetta and published by . This book was released on 2013 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interactions between a structure, its foundation, and the surrounding soil during an earthquake are referred to as soil-foundation-structure interaction (SFSI). The interactions between multiple structures, and their foundations, through the surrounding soil are collectively known as structure-soil-structure interaction (SSSI). Modern design codes in use in the United States, and abroad, provide guidance for considering SFSI during the seismic design of structural systems. However, these same codes do not provide any guidance for considering SSSI. This situation is a direct result of the current paucity of research into the effects of SSSI on structural performance. This dissertation describes the results of four centrifuge experiments designed to study the influence of SSSI on the seismic performance of building-foundation systems. Following these experiments, numerical models were developed and their efficiency at reproducing measured response evaluated. The experimental program involved two pairs of tests. During Test-1 and Test-2, the SFSI and SSSI-influenced responses of two three-dimensional inelastic frame structures were recorded. During Test-3 and Test-4, the interactions between an inelastic frame structure and an elastic rocking wall arranged in a variety of orientations were recorded. In each of the pair of test series, one configuration was devoted to the evaluation of the response of the model frame structures far from any neighboring structure. Ultimately, the experimental results demonstrate that when structures are placed next to each other, the seismic demands in inelastic frame structures can increase. As such, seismic structural performance may be negatively impacted by SSSI. The tests reveal that footings of buildings placed nearest to other buildings can be physically restrained when loaded towards the other building -- a physical mechanism that had not previously been observed. This asymmetrical physical restraint resulted in a stiffened hysteretic response of footings nearest to adjacent buildings and nominal increases in seismic demands to superstructure elements. It is also demonstrated that wave-based analytical solutions to the SSSI problem alone are not adequate for modeling the interactions between building-foundation systems with highly nonlinear foundation responses. During the numerical phase of this research, available tools for modeling SFSI effects (i.e., absent the effects of neighboring structures) in OpenSees were first refined. The shallowFoundationGen command was redeveloped to give the user greater flexibility. Subsequently, it was demonstrated that the updated modeling technique provides an adequate means to model the experimentally observed coupling of the vertical footing force and overturning moment load combinations for shallow foundations attached to inelastic frame structures. Finally, an available methodology for modeling wave-based SSSI effects was implemented in OpenSees and its capability to predict the experimentally measured seismic demands of an SSSI-influenced inelastic structure was evaluated. Ultimately, it is concluded that the use of foundation-to-foundation connection springs, which are based on wave-based solutions, is insufficient for capturing the seismic response of adjacent structures with highly nonlinear individual SFSI responses.

Book Dynamic Soil Structure Soil Interaction Analysis of Structures in Dense Urban Environments

Download or read book Dynamic Soil Structure Soil Interaction Analysis of Structures in Dense Urban Environments written by Katherine Carys Jones and published by . This book was released on 2013 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Urban centers are increasingly becoming the locus of enterprise, innovation, and population. This pull toward the center of cities has steadily elevated the importance of these areas. Growth has necessarily spawned new construction. Consequently, modern buildings are often constructed alongside legacy structures, new deep basements are constructed alongside existing shallow foundations, and city blocks composed of a variety of building types result. The underlying soil, foundation, and superstructure of each of these buildings can interact and combine to yield unique seismic responses. Since the seminal work of researchers such as Luco and Contesse (1973) and Wong and Trifunac (1975), researchers have investigated the effects of soil-structure interaction (SSI). This phenomenon refers to the interaction between a single building, its foundation, and the underlying soil during a seismic event. However, as the trend toward urbanization continues, a shortcoming of this conventional SSI approach is that in reality, a structure will almost certainly be located near other structures in metropolitan areas. In this line of research, the interaction of multiple, adjacent buildings during a seismic event, a phenomenon known as structure-soil-structure interaction (SSSI), is investigated. This topic does not yet command the level of attention given to SSI. However, SSSI has the potential to be significantly detrimental or beneficial, depending on the configuration and dynamic properties of the buildings and their foundations in dense urban environments. It is important to understand SSSI effects so that earthquake engineers can make informed decisions about the design and construction of structures in increasingly dense urban areas. As part of a larger, multi-university National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation Research (NEESR) project, a series of centrifuge experiments were performed at the NEES-supported Center for Geotechnical Modeling (CGM) at the University of California, Davis. Each of these experiments examined aspects of SSI or SSSI through the use of nonlinear structural model buildings situated on different foundations that were supported on deep sand deposits. The centrifuge experiments created a suite of small-scale physical model "case histories" that provided "data" and insight that could be extended through calibrated numerical simulations. The results of the first three centrifuge experiments in the test series (i.e., Test-1, Test-2, and Test-3) were utilized in this dissertation. Numerical analyses are usually only performed for high-profile projects. The effort, expertise and resources required to calibrate and to perform detailed numerical simulations is often prohibitive for typical low- to mid-rise structures. There is a need for a more accessible numerical tool that both geotechnical and structural engineers can utilize to gain insight. In this research, the FLAC finite difference program (Itasca, 2005) with a fully nonlinear effective stress soil constitutive model was used to analyze the centrifuge test-generated "case histories." Test-1 and Test-2 examined SSI and SSSI effects of two moment-resisting frames (MRFs). Test-1 employed a solitary 3-story (prototype) MRF founded on shallow spread footings and a solitary 9-story (prototype) MRF founded on a deep basement (equivalent to 3-stories, prototype) to investigate SSI effects. In Test-2, the 3-story (prototype) and 9-story (prototype) MRFs were placed immediately adjacent to one another to examine SSSI effects. Kinematic interaction effects were primarily observed in these tests. Hence, Test-3 was designed to investigate inertial interaction effects. Three structures were included in Test-3: two MRFs founded on shallow spread footings and one elastic shear-wall structure on a mat foundation. Each of these structures was designed to maximize inertial interaction by: (1) matching the flexible base period of each structure to the soil column to induce resonance, and (2) optimizing structural properties to increase inertial interaction effects. One MRF was positioned alone at one end of the centrifuge model, a SSI condition, and the other MRF and the elastic shear-wall structure were positioned immediately adjacent to each other in the other end of the centrifuge model, a SSSI condition. The rich data set developed through the centrifuge experiments formed the basis of the initial FLAC analyses. A critical aspect of any seismic analysis is the constitutive model used to capture the soil response to cyclic loading. Several soil models were examined during an initial seismic site response analysis. Free-field data from sensors located within the centrifuge soil column were used to quantify the vertical propagation of ground motions through the soil profile. The best model for the dense (Dr = 80%), dry sand used in the centrifuge for Test-1 through Test-3 was a Mohr-Coulomb based model with hysteretic damping, UBCHYST (Naesgaard, 2011). Pseudo-acceleration response spectra and acceleration time histories at the base and at the free-field surface from the centrifuge and the numerical model were compared. The numerical simulations successfully captured the key aspects of the observed seismic site-response for both near-fault pulse-type motions and ordinary motions at a variety of intensities. After successfully capturing the free-field seismic site responses of Test-1 and Test-2, the dynamic responses of the structural models were examined. Each structure was modeled satisfactorily with a two-dimensional, plane-strain numerical model. Engineering design parameters (EDPs) were computed for key structural responses, including (1) transient peak roof drift, (2) residual roof drift, (3) transient peak displacement and (4) peak acceleration at the center of mass of the structure. Additionally, the acceleration time histories and pseudo-acceleration response spectra at the center of mass of the structure for each motion were examined. These metrics were used to compare the numerically estimated dynamic responses with those recorded in the centrifuge experiments. The dynamic response of the 3-story (prototype) MRF estimated with the numerical model was in close agreement with the observed experimental data for both the SSI (Test-1) and SSSI (Test-2) configurations. The more complicated 9-story (prototype) model exhibited greater sensitivity to numerical system inputs, including fixed-base fundamental period and applied structural Rayleigh damping. However, the majority of its recorded dynamic responses were well-matched by the numerical model. The resonant condition created in Test-3 proved challenging to model numerically. The two Test-3 conditions (i.e., SSI and SSSI) were analyzed separately. Significant inertial interaction, including rocking, was observed during the centrifuge test and in the post-processing of data; pseudo-acceleration responses three to five times those recorded in Test-1 and Test-2 were recorded. While the shapes of the pseudo-acceleration response spectra, periods of amplification, and time-histories were well-captured, the numerical model estimated significantly lower amplitudes of the responses for the structures than were observed during the centrifuge test. A sensitivity study was performed to evaluate the influence of several parameters, including (1) the shear wave velocity profile, (2) interface elements, (3) fixed-base fundamental period estimate, and (4) constitutive model parameters. Some of the relative lack of amplification in the numerical simulations was due to over damping in the constitutive model. This was addressed by altering the shear modulus and material damping curves for the soil directly beneath the structures' foundation elements. However, the primary reason for the lower amplitude estimated by the numerical model appeared to be due to the difficulty of capturing the seismic responses of structures in the resonant condition. Shifting the period of any component of the soil-structure system would necessarily have a significant impact on the dynamic response by shifting the system away from resonance. Despite this challenge, the numerical simulations yielded important insights. While the amplitudes of dynamic responses were underestimated for most of the ground motions, the changes in response of the 3-story (prototype) MRF between SSI and SSSI were captured. The elastic shear wall displayed similar behavior; while the spectral shapes were matched for most motions, the amplitudes estimated by the numerical simulations were consistently below those observed in the centrifuge. Comparison of overall change from low- to high-intensity motions or trends from SSI to SSSI could be captured with the model; however, the amplitudes of the responses were generally underestimated. This set of analyses highlighted the challenge of modeling a resonant condition. Additional work is needed to explore the characteristics of the centrifuge when intense input motions are used which are in resonance with the soil in the model. Finally, two prototypical structures were examined. The first, a 3-story MRF, was the model upon which the centrifuge 3-story (prototype) model was based (Ganuza, 2006). Both solitary (SSI) and adjacent (SSSI) configurations were considered for this prototypical 3-story MRF founded on a dense sand soil column. The dynamic responses of the MRF for the solitary (SSI) condition paralleled those observed in the centrifuge experiments. For the considered configurations of adjacent low-rise structures, SSSI effects were found to be either negligible or only slightly beneficial or detrimental for the five ground motions utilized for dynamic analysis. The other prototypical MRF, a 5-story structure, was a simplified version of a typical, medium-rise structure (Ganuza, 2006). The 5-story MRF exhibited dynamic responses consistent with previous work. Amplific.

Book Soil Foundation Structure Interaction

Download or read book Soil Foundation Structure Interaction written by Rolando P. Orense and published by CRC Press. This book was released on 2010-07-20 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil-Foundation-Structure Interaction contains selected papers presented at the International Workshop on Soil-Foundation-Structure Interaction held in Auckland, New Zealand from 26-27 November 2009. The workshop was the venue for an international exchange of ideas, disseminating information about experiments, numerical models and practical en

Book Seismic Performance Assessment in Dense Urban Environments

Download or read book Seismic Performance Assessment in Dense Urban Environments written by Henry Benjamin Mason and published by . This book was released on 2011 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: In seismically active, densely populated areas, buildings within a city block interact with one another during an earthquake. This phenomenon, whereby two adjacent buildings interact with each other through the surrounding soil during an earthquake, is often called structure-soil-structure interaction (SSSI). SSSI effects are less understood than soil-foundation-structure interaction (SFSI) effects. There are a lack of high-quality case histories that clearly show SSSI, which is a key reason that SSSI is less understood than SFSI. SSSI effects can potentially be detrimental and lead to more damage within the soil-foundation-structure system. Accordingly, it is important to understand when SSSI effects are important, and include them in engineering analysis and design when necessary. This dissertation describes three centrifuge tests designed to simulate SSSI and SFSI case histories. All centrifuge test described within this dissertation were performed at the University of California at Davis Center for Geotechnical Modeling (UCD-CGM). The first test, Centrifuge Test-1, examined two inelastic moment-resisting frame structures atop a bed of dry, dense sand. One frame structure represented a prototypical three-story moment-resisting frame structure founded on spread footings. The other frame structure represented a prototypical nine-story moment-resisting frame structure founded on a three-story basement. The two structures were located a significant distance apart, and thus, SSSI effects were masked. Accordingly, the purpose of Test-1 was to examine SFSI effects of inelastic frame structures and to serve as a baseline test (i.e., a control test). The second test, Centrifuge Test-2, examined the same two structures atop a bed of dry, dense sand. In Test-2, however, the two structures were located adjacent to each other. Therefore, the purpose of Test-2 was to examine SSSI effects. By comparing results from Test-1 with results from Test-2, insights into SSSI effects were made. The third test, Centrifuge Test-3, examined three structures atop a bed of dry, dense sand. Two of the structures were identical, and represented prototypical three-store moment-resisting frame structures founded on spread footings. These structures were nearly identical to the three-story structures used during Test-1 and Test-2. The third structure was a rigid rocking wall founded on a large mat foundation, which was identified as the transmitter structure. One frame structure, which was identified as the receiver structure, was located adjacent to the transmitter structure. The other frame structure, which was identified as the control structure, was located a significant distance away from the transmitter-receiver pair of structures. The design goal of the transmitter-receiver pair was to maximize interaction between the two structures. By comparing the seismic response of the control structure with the seismic response of the receiver structure, insights into SSSI were made. The earthquake motions employed during the three centrifuge tests described within this dissertation are critically important. A preliminary centrifuge test (Test-0) was performed after an earthquake motion selection process. The purpose of Test-0 was to calibrate a suite of earthquake motions that could be used at the UCD-CGM. This dissertation describes an earthquake motion selection and calibration process that future researchers can use to create test-specific earthquake motions for their research projects. Kinematic SFSI and SSSI effects were examined during Test-1 and Test-2. Specifically, the earthquake motions recorded in the free-field at the surface, which is the earthquake motion most often used by practicing engineers for dynamic analyses, was compared to the earthquake motion recorded under the basement, in the soil. Because of kinematic interaction effects, which include base slab averaging and embedment effects, the earthquake motion recorded under the basement has smaller amplitude and smaller high-frequency content than the earthquake motion recorded in the free-field at the surface. This is an established observation, and Test-1 and Test-2 data corroborate with current kinematic interaction estimation procedures. When comparing the results from Test-2 with Test-1, however, it was seen that basement-level earthquake motion differed less from the free-field surface motion during Test-2. This result indicates that kinematic interaction effects may be masked in urban environments. The seismic responses of the shallowly embedded frame structure footings were also examined during Test-1, Test-2, and Test-3. More specifically, the vertical displacement (settlement and uplift), horizontal displacement (sliding), and rocking were examined. By comparing results from Test-2 with results from Test-1, it was seen that the deeply embedded basement "restrains" the adjacent footings. In other words, the adjacent footings displace and rotate less than the footings that are not adjacent to the basement (i.e., the free footings). This asymmetrical footing response leads to additional demands on the superstructure, which may be unacceptable. In addition, the seismically-induced column moments measured above the restrained footings are larger than those measured above the free footings. Therefore, SSSI effects were seen to be potentially detrimental (i.e., lead to more superstructure damage) during Test-2. During Test-3, the same footing restraining effect observed in Test-2 was found to be not as large. However, there is evidence that the transmitter structure affected the seismic response of the adjacent receiver structure. More specifically, as the transmitter structure rocked and settled during the higher-intensity earthquake motions, the adjacent footings of the receiver structure did uplift, and this caused asymmetry in the superstructure. A general observation from Test-3 is that the seismic footing response of frame structures founded on shallowly-embedded footings is erratic. Future work in this area will examine possible explanations for the observed erratic response.

Book Deterministic Numerical Modeling of Soil Structure Interaction

Download or read book Deterministic Numerical Modeling of Soil Structure Interaction written by Stephane Grange and published by John Wiley & Sons. This book was released on 2021-12-22 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to describe soil–structure interaction in various situations (nonlinear, static, dynamic, hydro-mechanical couplings), this book gives an overview of the main modeling methods developed in geotechnical engineering. The chapters are centered around: the finite element method (FEM), the finite difference method (FDM), and the discrete element method (DEM). Deterministic Numerical Modeling of Soil–Structure Interaction allows the reader to explore the classical and well-known FEM and FDM, using interface and contact elements available for coupled hydro-mechanical problems. Furthermore, this book provides insight on the DEM, adapted for interaction laws at the grain level. Within a classical finite element framework, the concept of macro-element is introduced, which generalizes constitutive laws of SSI and is particularly straightforward in dynamic situations. Finally, this book presents the SSI, in the case of a group of structures, such as buildings in a town, using the notion of metamaterials and a geophysics approach.

Book Site Response  Soil structure Interaction and Structure soil structure Interaction for Performance Assessment of Buildings and Nuclear Structures

Download or read book Site Response Soil structure Interaction and Structure soil structure Interaction for Performance Assessment of Buildings and Nuclear Structures written by Chandrakanth Bolisetti and published by . This book was released on 2014 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: During an earthquake, the flexibility of the near-surface soil affects the dynamic response of the supported structure. This dynamic interaction is termed soil-structure interaction (SSI). Soil-structure interaction is important for performance-based design, which has seen increasing use in earthquake engineering in the United States in the last decade. Soil-structure interaction analysis is preceded by site-response analysis, which is the process of calculating the response of a soil profile to rock motion at depth. Soil flexibility also results in the interaction of adjacent structures through intermediate soil. This interaction is termed structure-soil-structure interaction (SSSI), which can be important for the performance assessment of buildings, especially those constructed in dense, urban areas. The studies presented in this dissertation share the common goal of a better understanding of the phenomena of site response, SSI and SSSI, and advancing the numerical tools that simulate these phenomena. The state-of-the-art in site-response and SSI analysis of buildings and nuclear structures involves the use of linear or equivalent-linear numerical methods that function in the frequency domain. However, nonlinear time-domain methods may be more appropriate for cases involving intense earthquakes that result in highly nonlinear soil and foundation response. Such nonlinear methods are available but rarely used due to the higher computational requirements and lack of experience with analysts and regulators. This dissertation assesses industry-standard equivalent linear and nonlinear site-response and SSI analysis programs, and provides practical guidelines on their usage. The assessment includes benchmarking the time-domain programs against frequency-domain programs for analyses involving almost linear soil response, and a comparison of the predictions of these programs for analyses involving highly nonlinear soil and foundation response. The assessment also identifies the various pitfalls that can be expected when using these programs and suggests workarounds. Structure-soil-structure interaction has been rarely studied, mainly due to the lack of experimental or field-based case-studies that demonstrate its effects on structural response. The US National Science Foundation funded a research project titled `Seismic Performance Assessment of Buildings in Dense Urban Environments' to understand the significance of SSSI in buildings through a series of centrifuge experiments and numerical simulations. The experiments involve small-scale building models with commonly-found superstructure and foundation configurations. This dissertation describes some of these centrifuge experiments, and their numerical simulations, which are comprehensive and performed using both equivalent-linear and nonlinear SSI analysis programs. The numerical and experimental results show that wave-based SSSI does not significantly affect the global response of the buildings considered in this study.

Book Coupled Site and Soil Structure Interaction Effects with Application to Seismic Risk Mitigation

Download or read book Coupled Site and Soil Structure Interaction Effects with Application to Seismic Risk Mitigation written by Tom Schanz and published by Springer Science & Business Media. This book was released on 2009-06-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop on Coupled Site and Soil-Structure Interaction Effects with Application to Seismic Risk Mitigation Borovets, Bulgaria 30 August - 3 September 2008

Book Seismic Performance of Soil Foundation Structure Systems

Download or read book Seismic Performance of Soil Foundation Structure Systems written by Nawawi Chouw and published by CRC Press. This book was released on 2017-08-25 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic Performance of Soil-Foundation-Structure Systems presents invited papers presented at the international workshop (University of Auckland, New Zealand, 21-22 November 2016). This international workshop brought together outstanding work in earthquake engineering that embraces a holistic consideration of soilfoundation-structure systems. For example, the diversity of papers in this volume is represented by contributions from the fields of shallow foundation in liquefiable soil, spatially distributed lifelines, bridges, clustered structures (see photo on front cover), sea floor seismic motion, multi-axial ground excitation, deep foundations, soil-foundation-structurefluid interaction, liquefaction-induced settlement and uplift with SFSI. A fundamental knowledge gap is manifested by the isolated manner geotechnical and structural engineers work. A holistic consideration of soil-foundation-structures systems is only possible if civil engineers work collaboratively to the mutual benefit of all disciplines. Another gap occurs by the retarded application of up-to-date research findings in engineering design practices. Seismic Performance of Soil-Foundation-Structure Systems is the outcome from the recognized need to close this gap, since it has been observed that a considerable delay exists between published research findings and application of the principles revealed by the research. Seismic Performance of Soil-Foundation-Structure Systems will be helpful in developing more understanding of the complex nature of responses these systems present under strong earthquakes, and will assist engineers in closing the gaps identified above.

Book Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions

Download or read book Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions written by Francesco Silvestri and published by CRC Press. This book was released on 2019-07-19 with total page 8083 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.

Book ASCE Standard  ASCE SEI  41 17  Seismic Evaluation and Retrofit of Existing Buildings

Download or read book ASCE Standard ASCE SEI 41 17 Seismic Evaluation and Retrofit of Existing Buildings written by American Society of Civil Engineers and published by . This book was released on 2017 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Standard ASCE/SEI 41-17 describes deficiency-based and systematic procedures that use performance-based principles to evaluate and retrofit existing buildings to withstand the effects of earthquakes.

Book Soil Dynamics and Earthquake Geotechnical Engineering

Download or read book Soil Dynamics and Earthquake Geotechnical Engineering written by Boominathan Adimoolam and published by Springer. This book was released on 2018-06-09 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected proceedings of the annual conference of the Indian Geotechnical Society, and covers various aspects of soil dynamics and earthquake geotechnical engineering. The book includes a wide range of studies on seismic response of dams, foundation-soil systems, natural and man-made slopes, reinforced-earth walls, base isolation systems and so on, especially focusing on the soil dynamics and case studies from the Indian subcontinent. The book also includes chapters addressing related issues such as landslide risk assessments, liquefaction mitigation, dynamic analysis of mechanized tunneling, and advanced seismic soil-structure-interaction analysis. Given its breadth of coverage, the book offers a useful guide for researchers and practicing civil engineers alike.

Book Soil Structure Interaction

Download or read book Soil Structure Interaction written by A.S. Cakmak and published by Elsevier. This book was released on 2014-04-11 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite advances in the field of geotechnical earthquake engineering, earthquakes continue to cause loss of life and property in one part of the world or another. The Third International Conference on Soil Dynamics and Earthquake Engineering, Princeton University, Princeton, New Jersey, USA, 22nd to 24th June 1987, provided an opportunity for participants from all over the world to share their expertise to enhance the role of mechanics and other disciplines as they relate to earthquake engineering. The edited proceedings of the conference are published in four volumes. This volume covers: Soil Structure Interaction under Dynamic Loads, Vibration of Machine Foundations, and Base Isolation in Earthquake Engineering. With its companion volumes, it is hoped that it will contribute to the further development of techniques, methods and innovative approaches in soil dynamics and earthquake engineering.

Book Dynamic Soil Structure Interaction

Download or read book Dynamic Soil Structure Interaction written by C. Zhang and published by Elsevier. This book was released on 1998-09-22 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Soil-structure interaction is one of the major topics in earthquake engineering and soil dynamics since it is closely related to the safety evaluation of many important engineering projects, such as nuclear power plants, to resist earthquakes. In dealing with the analysis of dynamic soil-structure interactions, one of the most difficult tasks is the modeling of unbounded media. To solve this problem, many numerical methods and techniques have been developed. This book summarizes the most recent developments and applications in the field of dynamic soil-structure interaction, both in China and Switzerland. An excellent book for scientists and engineers in civil engineering, structural engineering, geotechnical engineering and earthquake engineering.

Book Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering  Beijing 2022

Download or read book Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering Beijing 2022 written by Lanmin Wang and published by Springer Nature. This book was released on 2022-09-19 with total page 2417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 4th International Conference on Performance-based Design in Earthquake Geotechnical Engineering (PBD-IV) is held in Beijing, China. The PBD-IV Conference is organized under the auspices of the International Society of Soil Mechanics and Geotechnical Engineering - Technical Committee TC203 on Earthquake Geotechnical Engineering and Associated Problems (ISSMGE-TC203). The PBD-I, PBD-II, and PBD-III events in Japan (2009), Italy (2012), and Canada (2017) respectively, were highly successful events for the international earthquake geotechnical engineering community. The PBD events have been excellent companions to the International Conference on Earthquake Geotechnical Engineering (ICEGE) series that TC203 has held in Japan (1995), Portugal (1999), USA (2004), Greece (2007), Chile (2011), New Zealand (2015), and Italy (2019). The goal of PBD-IV is to provide an open forum for delegates to interact with their international colleagues and advance performance-based design research and practices for earthquake geotechnical engineering.

Book Developments in Dynamic Soil Structure Interaction

Download or read book Developments in Dynamic Soil Structure Interaction written by Polat Gülkan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last couple of decades it has been recognized that the foundation material on which a structure is constructed may interact dynamically with the structure during its response to dynamic excitation to the extent that the stresses and deflections in the system are modified from the values that would have been developed if it had been on a rigid foundation. This phenomenon is examined in detail in the book. The basic solutions are examined in time and frequency domains and finite element and boundary element solutions compared. Experimental investigations aimed at correlation and verification with theory are described in detail. A wide variety of SSI problems may be formulated and solved approximately using simplified models in lieu of rigorous procedures; the book gives a good overview of these methods. A feature which often lacks in other texts on the subject is the way in which dynamic behavior of soil can be modeled. Two contributors have addressed this problem from the computational and physical characterization viewpoints. The book illustrates practical areas with the analysis of tunnel linings and stiffness and damping of pile groups. Finally, design code provisions and derivation of design input motions complete this thorough overview of SSI in conventional engineering practice. Taken in its entirety the book, authored by fifteen well known experts, gives an in-depth review of soil-structure interaction across a broad spectrum of aspects usually not covered in a single volume. It should be a readily useable reference for the research worker as well as the advance level practitioner. (abstract) This book treats the dynamic soil-structure interaction phenomenon across a broad spectrum of aspects ranging from basic theory, simplified and rigorous solution techniques and their comparisons as well as successes in predicting experimentally recorded measurements. Dynamic soil behavior and practical problems are given thorough coverage. It is intended to serve both as a readily understandable reference work for the researcher and the advanced-level practitioner.

Book Soil Structure Interaction in Different Seismic Environments

Download or read book Soil Structure Interaction in Different Seismic Environments written by and published by . This book was released on 1979 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: