EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Seismic Design of Vertically Irregular Reinforced Concrete Structures

Download or read book Seismic Design of Vertically Irregular Reinforced Concrete Structures written by Satrajit Das and published by . This book was released on 2000 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keywords: Seismic, Buildings, Irregular, Structures, Nonlinear, Dynamic, Damage, Ductility, Stiffness, Strength, Mass, Uniform Building Code.

Book Seismic Design of Vertically Irregular Reinforced Concrete Structures

Download or read book Seismic Design of Vertically Irregular Reinforced Concrete Structures written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic building codes, such as the Uniform Building Code (UBC) do not allow the equivalent lateral force (ELF) procedure to be used for structures with vertical irregularities. The UBC defines a structure to be irregular based on the ratio of magnitudes of either strength, stiffness, mass, setback or offset of one floor to that of an adjacent floor. The criteria defining the limits of irregularity are somewhat arbitrary, but are introduced in the code to provide unambiguous, enforceable provisions. The purpose of this study is to quantify the definition of irregular structures for four different vertical irregularities - stiffness, strength, mass and nonstructural masonry infills. A total of 87 building structures with interstory stiffness and strength ratios ranging from 0.09 to 1.89 and 0.27 to 1.07, respectively, and mass ratios of 1.0, 2.5, and 5.0 are considered for a detailed parametric study. The lateral force resisting systems (LFRS) considered are special moment resisting frames and shear walls. These LFRS's are designed based on the forces obtained from the equivalent lateral force procedure. An ELF) analysis. Finally, nonlinear dynamic analysis is performed in order to assess the seismic performance of these buildings. The results show that the restrictions on the applicability of the equivalent lateral force procedure are unnecessarily conservative for irregular structures. Most structures considered in this study, designed on the basis of the ELF approach, perform reasonably well. In some cases, however, there is an initiation of an undesirable collapse mechanism. It is recommended that capacity based criteria in the design phase be appropriately used in the vicinity of the irregularity in order to ensure desired performance and behavior.

Book Displacement based Seismic Design of Reinforced Concrete Buildings

Download or read book Displacement based Seismic Design of Reinforced Concrete Buildings written by fib Fédération internationale du béton and published by fib Fédération internationale du béton. This book was released on 2003 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brief summary of the history of seismic design as given in chapter 1, indicates that initially design was purely based on strength or force considerations. When the importance of displacement, however, became better appreciated, it was attempted to modify the existing force-based approach in order to include considerations of displacement, rather than to totally reconsider the procedure on a more rational basis. In the last decade, then, several researchers started pointing out this inconsistency, proposing displacement-based approaches for earthquake engineering evaluation and design, with the aim of providing improved reliability in the engineering process by more directly relating computed response and expected structural performance. The main objective of this report is to summarize, critically review and compare the displacement - based approaches proposed in the literature, thus favouring code implementation and practical use of rational and reliable methods. Chapter 2 Seismic performance and design objectives of this report introduces concepts of performance levels, seismic hazard representation, and the coupling of performance and hazard to define performance objectives. In fact, for displacement analysis to be relevant in the context of performance-based design, the structural engineer must select appropriate performance levels and seismic loadings. A critical review of some engineering limit states appropriate to the different performance levels is therefore proposed. In chapter 3 Conceptual basis for displacement-based earthquake resistant design, the fundamental principles associated with displacement of the ground during an earthquake and the effects, in terms of displacement, in the structure, are reviewed. The historical development guides the presentation with a review of general linear and nonlinear structural dynamics principles, general approaches to estimate displacement, for both ground and structure, and finally a general presentation of the means to measure and judge the appropriateness of the displacements of the structure in section. Chapter 4 Approaches and procedures for displacement-based design can be somehow considered the fundamental part of the report, since a critical summary of the displacement - based approaches proposed by different researchers is presented there. Displacement - based design may require specific characterization of the input ground motion, a topic addressed in Chapter 5 Seismic input. In general, various pertinent definitions of input motion for non-code format analysis are included, while peak ground parameters necessary for code base shear equations are only addressed as needed for the definition of motion for analysis. Chapter 6 Displacement capacity of members and systems addresses the fundamental problem of evaluating the inelastic displacement capacity of reinforced concrete members and realistic values of their effective cracked stiffness at yielding, including effects of shear and inclined cracking, anchorage slip, bar buckling and of load cycling. In Chapter 7 Application and evaluation of displacement-based approaches, some of the many different displacement based design procedures briefly introduced in Chapter 4 are applied to various case studies, identifying and discussing the difficulties a designer may encounter when trying to use displacement based design. Results for five different case studies designed in accordance with eight different displacement based design methods are presented. Although in general case studies are considered a useful but marginal part of a state of the art document, in this case it has to be noted that chapter 7 is possibly the most innovative and fundamental part of the whole report. The conclusions of chapter 7 are the fundamental and essential conclusions of the document and allow foreseeing a bright future for displacement - based design approaches. The state-of-art report has been elaborated over a period of 4 years by Task Group 7.2 Displacement-based design and assessment of fib Commission 7Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In October 2002 the final draft of the Bulletin was presented to the public during the 1st fibCongress in Osaka. It was also there that it was approved by fib Commission 7Seismic Design.

Book Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures

Download or read book Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures written by Srinivasan Chandrasekaran and published by CRC Press. This book was released on 2016-04-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tools to Safeguard New Buildings and Assess Existing OnesNonlinear analysis methods such as static pushover are globally considered a reliable tool for seismic and structural assessment. But the accuracy of seismic capacity estimates-which can prevent catastrophic loss of life and astronomical damage repair costs-depends on the use of the correct b

Book Seismic Performance of Concrete Buildings

Download or read book Seismic Performance of Concrete Buildings written by Liviu Crainic and published by CRC Press. This book was released on 2012-12-10 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines and presents essential aspects of the behavior, analysis, design and detailing of reinforced concrete buildings subjected to strong seismic activity. Seismic design is an extremely complex problem that has seen spectacular development in the last decades. The present volume tries to show how the principles and methods of earthquake engineering can be applied to seismic analysis and design of reinforced concrete buildings. The book starts with an up-to-date presentation of fundamental aspects of reinforced concrete behavior quantified through constitutive laws for monotonic and hysteretic loading. Basic concepts of post-elastic analysis like plastic hinge, plastic length, fiber models, and stable and unstable hysteretic behaviour are, accordingly, defined and commented upon. For a deeper understanding of seismic design philosophy and of static and dynamic post-elastic analysis, seismic behavior of different types of reinforced concrete structures (frames, walls) is examined in detail. Next, up-to-date methods for analysis and design are presented. The powerful concept of structural system is defined and systematically used to explain the response to seismic activity, as well as the procedures for analysis and detailing of common building structures. Several case studies are presented. The book is not code-oriented. The structural design codes are subject to constant reevaluation and updating. Rather than presenting code provisions, this book offers a coherent system of notions, concepts and methods, which facilitate understanding and application of any design code. The content of this book is based mainly on the authors’ personal experience which is a combination of their teaching and research activity as well as their work in the private sector as structural designers. The work will serve to help students and researchers, as well as structural designers to better understand the fundamental aspects of behavior and analysis of reinforced concrete structures and accordingly to gain knowledge that will ensure a sound design of buildings.

Book Seismic Behaviour and Design of Irregular and Complex Civil Structures III

Download or read book Seismic Behaviour and Design of Irregular and Complex Civil Structures III written by Dietlinde Köber and published by Springer Nature. This book was released on 2020-03-06 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art knowledge on problems of the effects of structural irregularities on their seismic response. It also covers specific spatial and rotational seismic loads on these structures. Rapid progress in respective research on irregular structures and unconventional seismic loads requires prompt updates of the state of the art in this area. These problems are of particular interest to both researchers and practitioners because these are non-conservative effects compared with the approach of the traditional seismic design (e.g. Eurocode 8, Uniform Building Code etc.). This book will be of particular interest to researchers, PhD students and engineers dealing with design of structures under seismic excitations.

Book Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response

Download or read book Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response written by Comité euro-international du béton and published by Thomas Telford. This book was released on 1998 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detailed guide is designed to enable the reader to understand the relative importance of the numerous parameters involved in seismic design and the relationships between them, as well as the motivations behind the choices adopted by the codes.

Book Seismic design of reinforced concrete structures for controlled inelastic response design concepts

Download or read book Seismic design of reinforced concrete structures for controlled inelastic response design concepts written by FIB – International Federation for Structural Concrete and published by FIB - International Federation for Structural Concrete. This book was released on 1997-03-01 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Seismic Design of Concrete Buildings to Eurocode 8

Download or read book Seismic Design of Concrete Buildings to Eurocode 8 written by Michael Fardis and published by CRC Press. This book was released on 2015-02-04 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Original Source of Expressions and Tools for the Design of Concrete Elements with EurocodeSeismic design of concrete buildings needs to be performed to a strong and recognized standard. Eurocode 8 was introduced recently in the 30 countries belonging to CEN, as part of the suite of Structural Eurocodes, and it represents the first European Stand

Book Seismic Behaviour and Design of Irregular and Complex Civil Structures IV

Download or read book Seismic Behaviour and Design of Irregular and Complex Civil Structures IV written by Rita Bento and published by Springer Nature. This book was released on 2022-01-18 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains papers of the 9th European Workshop on the Seismic Behaviour of Irregular and Complex Structures (9EWICS) held in Lisbon, Portugal, in 2020. This workshop, organized at Instituto Superior Técnico, University of Lisbon, continued the successful three-annual series of workshops started back in 1996. Its organization had the sponsorship of Working Group 8 (Seismic Behaviour of Irregular and Complex Structures) of the European Association of Earthquake Engineering.This international event provided a platform for discussion and exchange of ideas and unveiled new insights on the possibilities and challenges of irregular and complex structures under seismic actions. The topics addressed include criteria for regularity, seismic design of irregular structures, seismic assessment of irregular and complex structures, retrofit of irregular and complex structures, and soil-structure interaction for irregular and complex structures. Beyond an excellent number of interesting papers on these topics, this volume includes the papers of the two invited lectures – one devoted to irregularities in RC buildings, including perspectives in current seismic design codes, difficulties in their application and further research needs, and another one dedicated to the challenging and very up to date topic in the area of seismic response of masonry building aggregates in historical centers. This volume includes 26 contributions from authors of 11 countries, giving a complete and international view of the problem.The holds particular interest for all the community involved in the challenging task of seismic design, assessment and/or retrofit of irregular and complex structures.

Book Seismic Design for Buildings

    Book Details:
  • Author : United States. Department of Defense. Tri-Service Seismic Design Committee
  • Publisher :
  • Release : 1973
  • ISBN :
  • Pages : 472 pages

Download or read book Seismic Design for Buildings written by United States. Department of Defense. Tri-Service Seismic Design Committee and published by . This book was released on 1973 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Earthquake Resistant Concrete Structures

Download or read book Earthquake Resistant Concrete Structures written by Andreas Kappos and published by CRC Press. This book was released on 2014-04-21 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces practising engineers and post-graduate students to modern approaches to seismic design, with a particular focus on reinforced concrete structures, earthquake resistant design of new buildings and assessment, repair and strengthening of existing buildings.

Book Design of Reinforced Concrete Buildings for Seismic Performance

Download or read book Design of Reinforced Concrete Buildings for Seismic Performance written by Mark Aschheim and published by CRC Press. This book was released on 2019-04-05 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.

Book Concrete Buildings in Seismic Regions

Download or read book Concrete Buildings in Seismic Regions written by George G. Penelis and published by CRC Press. This book was released on 2014-03-24 with total page 878 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bearing in mind that reinforced concrete is a key component in a majority of built environment structures, Concrete Buildings in Seismic Regions combines the scientific knowledge of earthquake engineering with a focus on the design of reinforced concrete buildings in seismic regions. This book addresses practical design issues, providing an integrated, comprehensible, and clear presentation that is suitable for design practice. It combines current approaches to seismic analysis and design, with a particular focus on reinforced concrete structures, and includes: an overview of structural dynamics analysis and design of new R/C buildings in seismic regions post-earthquake damage evaluation, pre earthquake assessment of buildings and retrofitting procedures seismic risk management of R/C buildings within urban nuclei extended numerical example applications Concrete Buildings in Seismic Regions determines guidelines for the proper structural system for many types of buildings, explores recent developments, and covers the last two decades of analysis, design, and earthquake engineering. Divided into three parts, the book specifically addresses seismic demand issues and the basic issues of structural dynamics, considers the "capacity" of structural systems to withstand seismic effects in terms of strength and deformation, and highlights existing R/C buildings under seismic action. All of the book material has been adjusted to fit a modern seismic code and offers in-depth knowledge of the background upon which the code rules are based. It complies with the last edition of European Codes of Practice for R/C buildings in seismic regions, and includes references to the American Standards in effect for seismic design.

Book Concrete Buildings in Seismic Regions  Second Edition

Download or read book Concrete Buildings in Seismic Regions Second Edition written by George G. Penelis and published by CRC Press. This book was released on 2018-10-04 with total page 966 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforced concrete (R/C) is one of the main building materials used worldwide, and an understanding of its structural performance under gravity and seismic loads, albeit complex, is crucial for the design of cost effective and safe buildings.Concrete Buildings in Seismic Regions comprehensively covers of all the analysis and design issues related

Book Seismic Design of Reinforced Concrete Buildings

Download or read book Seismic Design of Reinforced Concrete Buildings written by Jack Moehle and published by McGraw Hill Professional. This book was released on 2014-10-06 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complete coverage of earthquake-resistant concrete building design Written by a renowned seismic engineering expert, this authoritative resource discusses the theory and practice for the design and evaluation of earthquakeresisting reinforced concrete buildings. The book addresses the behavior of reinforced concrete materials, components, and systems subjected to routine and extreme loads, with an emphasis on response to earthquake loading. Design methods, both at a basic level as required by current building codes and at an advanced level needed for special problems such as seismic performance assessment, are described. Data and models useful for analyzing reinforced concrete structures as well as numerous illustrations, tables, and equations are included in this detailed reference. Seismic Design of Reinforced Concrete Buildings covers: Seismic design and performance verification Steel reinforcement Concrete Confined concrete Axially loaded members Moment and axial force Shear in beams, columns, and walls Development and anchorage Beam-column connections Slab-column and slab-wall connections Seismic design overview Special moment frames Special structural walls Gravity framing Diaphragms and collectors Foundations

Book Assessment of Multi story Building Seismic Design Factors with Structural Irregularity

Download or read book Assessment of Multi story Building Seismic Design Factors with Structural Irregularity written by El Sayed Abdel Naby Abdel Aziz Abou Khalifa and published by . This book was released on 2015 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many high-rise buildings are practically irregular as a result of the architectural and service requirements in the design process, errors and modifications during the construction phase, and changes of the building use throughout its service life. Structural irregularities could increase the uncertainties related to the ability of the building to meet the design objectives. This study is thus devoted to assess the safety margins and calibrate the seismic design response factors of modern high-rise buildings with different vertical irregularity features. A brief survey of the most common vertical irregularities in reinforced concrete multi-story buildings is conducted to select reference structures. Five 50-story high-rise buildings are then selected and fully designed using international building codes to represent well-designed tall buildings with principal vertical irregularity types. Fiber-based simulation models are developed to assess the seismic response of the five benchmark buildings under the effect of forty earthquake records representing far-field and near-field seismic scenarios. The comprehensive results obtained from inelastic pushover and incremental dynamic analyses are employed to provide insights into the local and global seismic response of the reference structures. The probabilistic vulnerability assessment of the five high-rise buildings is conducted at different limit states using fragility relationships. The study concluded that the seismic performance of well-designed regular and vertically irregular high-rise buildings is satisfactory under the design earthquake. Under severe earthquakes, the seismic response of tall buildings with extreme soft story and geometric irregularity is not inferior to that of the regular vii counterpart at different seismic performance levels. Despite the overstrength factor adopted in the design of buildings with discontinuities in the lateral-force-resisting system and extreme weak story, the observed negative impacts of these irregularity categories on increasing the vulnerability of high-rise buildings are substantial. This confirms the pressing need for mitigation strategies to reduce the expected seismic losses of the latter classes of building. The calibration of seismic design response factors of the reference high-rise buildings also confirms that, although the code coefficients are adequately conservative, they can be revised to arrive at a more efficient and cost-effective design of regular and irregular high-rise buildings.