EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Seismic Reservoir Modeling

Download or read book Seismic Reservoir Modeling written by Dario Grana and published by John Wiley & Sons. This book was released on 2021-05-04 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO2 sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density. Seismic Reservoir Modeling: Theory, Examples and Algorithms presents the main concepts and methods of seismic reservoir characterization. The book presents an overview of rock physics models that link the petrophysical properties to the elastic properties in porous rocks and a review of the most common geostatistical methods to interpolate and simulate multiple realizations of subsurface properties conditioned on a limited number of direct and indirect measurements based on spatial correlation models. The core of the book focuses on Bayesian inverse methods for the prediction of elastic petrophysical properties from seismic data using analytical and numerical statistical methods. The authors present basic and advanced methodologies of the current state of the art in seismic reservoir characterization and illustrate them through expository examples as well as real data applications to hydrocarbon reservoirs and CO2 sequestration studies.

Book Seismic Attributes for Prospect Identification and Reservoir Characterization

Download or read book Seismic Attributes for Prospect Identification and Reservoir Characterization written by Satinder Chopra and published by SEG Books. This book was released on 2007 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing the physical basis, mathematical implementation, and geologic expression of modern volumetric attributes including coherence, dip/azimuth, curvature, amplitude gradients, seismic textures, and spectral decomposition, the authors demonstrate the importance of effective colour display and sensitivity to seismic acquisition and processing.

Book Quantitative Seismic Interpretation

Download or read book Quantitative Seismic Interpretation written by Per Avseth and published by Cambridge University Press. This book was released on 2010-06-10 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Seismic Interpretation demonstrates how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes. The authors provide an integrated methodology and practical tools for quantitative interpretation, uncertainty assessment, and characterization of subsurface reservoirs using well-log and seismic data. They illustrate the advantages of these new methodologies, while providing advice about limitations of the methods and traditional pitfalls. This book is aimed at graduate students, academics and industry professionals working in the areas of petroleum geoscience and exploration seismology. It will also interest environmental geophysicists seeking a quantitative subsurface characterization from shallow seismic data. The book includes problem sets and a case-study, for which seismic and well-log data, and MATLAB® codes are provided on a website (http://www.cambridge.org/9780521151351). These resources will allow readers to gain a hands-on understanding of the methodologies.

Book Method for Determining Formation Quality Factor from Well Log Data and Its Application to Seismic Reservoir Characterization

Download or read book Method for Determining Formation Quality Factor from Well Log Data and Its Application to Seismic Reservoir Characterization written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A method for seismic characterization of subsurface Earth formations includes determining at least one of compressional velocity and shear velocity, and determining reservoir parameters of subsurface Earth formations, at least including density, from data obtained from a wellbore penetrating the formations. A quality factor for the subsurface formations is calculated from the velocity, the density and the water saturation. A synthetic seismogram is calculated from the calculated quality factor and from the velocity and density. The synthetic seismogram is compared to a seismic survey made in the vicinity of the wellbore. At least one parameter is adjusted. The synthetic seismogram is recalculated using the adjusted parameter, and the adjusting, recalculating and comparing are repeated until a difference between the synthetic seismogram and the seismic survey falls below a selected threshold.

Book Multicomponent Seismic Technology

Download or read book Multicomponent Seismic Technology written by Bob Adrian Hardage and published by . This book was released on 2011 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling of Seismic Signatures for Reservoir Characterization

Download or read book Modeling of Seismic Signatures for Reservoir Characterization written by Rodrigo Felício Fuck and published by . This book was released on 2008 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Shear wave Exploration

Download or read book Shear wave Exploration written by S. H. Danbom and published by . This book was released on 1987 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of shear (S) waves in seismic petroleum exploration is in a critical stage of development. This book outles the past technologies, the current ones and the possible future ones.The current efforts in S- wave exploration described in this paper consist of investigation of problems in S- wave recording for example surface wave interference, processing for example, reflectiion static time corrections and interpretation for example correlation of reflections on P- and S- wave seismic sections. It also looks at a recent development that will advance S- wave exploration considerably.

Book Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock

Download or read book Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2012/13, Natural Resources Canada released a multi-volume series of Canadian geohazard-related guidelines for geoprofessionals. One of these volumes addresses technical and non-technical topics specific to the measurement of shear wave velocities (Vs) for the assignment of seismic site categories, compliant with the 2010 National Building Code of Canada (NBCC). The volume covers the theory and limitations of 13 current and emerging Vs measurement techniques, and includes key references, current states of engineering practice, data collection procedures and processing techniques, and recommended reporting requirements for each method. Guidance is also provided on complimentary geophysical techniques for subsurface site reconnaissance. We anticipate that these Guidelines will be widely used by geophysicists, geotechnical engineers, municipal building code departments, and others who are involved in seismic site classification following the 2010 NBCC.

Book Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock

Download or read book Shear Wave Velocity Measurement Guidelines for Canadian Seismic Site Characterization in Soil and Rock written by and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2012/13, Natural Resources Canada released a multi-volume series of Canadian geohazard-related guidelines for geoprofessionals. One of these volumes addresses technical and non-technical topics specific to the measurement of shear wave velocities (Vs) for the assignment of seismic site categories, compliant with the 2010 National Building Code of Canada (NBCC). The volume covers the theory and limitations of 13 current and emerging Vs measurement techniques, and includes key references, current states of engineering practice, data collection procedures and processing techniques, and recommended reporting requirements for each method. Guidance is also provided on complimentary geophysical techniques for subsurface site reconnaissance. We anticipate that these Guidelines will be widely used by geophysicists, geotechnical engineers, municipal building code departments, and others who are involved in seismic site classification following the 2010 NBCC.

Book Introduction to Petroleum Seismology  second edition

Download or read book Introduction to Petroleum Seismology second edition written by Luc T. Ikelle and published by SEG Books. This book was released on 2018-03-26 with total page 1403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Petroleum Seismology, second edition (SEG Investigations in Geophysics Series No. 12) provides the theoretical and practical foundation for tackling present and future challenges of petroleum seismology especially those related to seismic survey designs, seismic data acquisition, seismic and EM modeling, seismic imaging, microseismicity, and reservoir characterization and monitoring. All of the chapters from the first edition have been improved and/or expanded. In addition, twelve new chapters have been added. These new chapters expand topics which were only alluded to in the first edition: sparsity representation, sparsity and nonlinear optimization, near-simultaneous multiple-shooting acquisition and processing, nonuniform wavefield sampling, automated modeling, elastic-electromagnetic mathematical equivalences, and microseismicity in the context of hydraulic fracturing. Another major modification in this edition is that each chapter contains analytical problems as well as computational problems. These problems include MatLab codes, which may help readers improve their understanding of and intuition about these materials. The comprehensiveness of this book makes it a suitable text for undergraduate and graduate courses that target geophysicists and engineers as well as a guide and reference work for researchers and professionals in academia and in the petroleum industry.

Book Reservoir Characterization Via Amplitude Versus Offset Analysis and Impedance Inversion in the Thrace Basin of Northwest Turkey

Download or read book Reservoir Characterization Via Amplitude Versus Offset Analysis and Impedance Inversion in the Thrace Basin of Northwest Turkey written by Sercan Pisen and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental parameters in seismic reservoir characterization are P-wave, S-wave velocities, and density. Understanding the relation of these parameters with the pore-fluid content and lithology is the key for this research. The purpose of the study is to detect and outline a hydrocarbon-saturated reservoir in the Thrace Basin of NW Turkey, which is primarily gas-prone, using four 2-D long-offset reflection lines and conventional well logs data that were acquired by Turkish Petroleum (TPAO). The major means are amplitude versus offset analysis and impedance inversion. In addition, petrophysical analysis is performed to understand and determine the rock properties including porosity, lithology and pore fluid content. Well-2 is interpreted, and reservoir interval is discovered in the depth range of 878-899 m. According to the available petrophysical data, the reservoir consists of high porosity shaly-sandstone with 38% water saturation. Seismic data is processed through Kirchhoff Time Migration to image subsurface geology with an optimum resolution. The processing flow is designed to preserve true amplitude which is required for satisfactory amplitude versus offset (AVO) analysis. AVO modeling is performed to understand the AVO response differences between brine and gas saturated cases. In the absence of measured shear wave velocity, it is predicted using primary wave velocity from sonic log based on Gassmann fluid substitution and Castagna equations. Furthermore, AVO analysis is carried out using NMO-corrected CDP gathers at Well-2 location to discriminate gas reservoir from background lithology. Class III type of AVO Anomaly which is known as "classic bright spot" is observed demonstrating amplitude is increasing as offset increases for both the top and base of the reservoir. Acoustic impedance inversion has been applied to characterize the rock properties of the reservoir zone. The reservoir interval is distinguished as a zone of relatively low-impedance and information regarding lateral extent of the reservoir sand is obtained, as well. Elastic impedance inversion using range-limited angle stacks demonstrates an increase in amplitude with offset/angle indicating that although the anomalous amplitude can be seen at the near offset stack, the reservoir is brightening and is more visible at far offset.

Book 3C Seismic and VSP  Converted waves and vector wavefield applications

Download or read book 3C Seismic and VSP Converted waves and vector wavefield applications written by James Gaiser and published by SEG Books. This book was released on 2016-06-30 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3C seismic applications provide enhanced rock property characterization of the reservoir that can complement P-wave methods. Continued interest in converted P- to S-waves (PS-waves) and vertical seismic profiles (VSPs) has resulted in the steady development of advanced vector wavefield techniques. PS-wave images along with VSP data can be used to help P-wave interpretation of structure in gas obscured zones, of elastic and fluid properties for lithology discrimination from S-wave impedance and density inversion in unconventional reservoirs, and of fracture characterization and stress monitoring from S-wave birefringence (splitting) analysis. The book, which accompanies the 2016 SEG Distinguished Instructor Short Course, presents an overview of 3C seismic theory and practical application: from fundamentals of PS-waves and VSPs, through to acquisition and processing including interpretation techniques. The emphasis is on unique aspects of vector wavefields, anisotropy, and the important relationships that unify S-waves and P-waves. Various applications and case studies demonstrate image benefits from PS-waves, elastic properties and fluid discrimination from joint inversion of amplitude variations with offset/angle (AVO/A), and VSP methods for anisotropic velocity model building and improved reservoir imaging. The book will be of interest to geophysicists, geologists, and engineers, especially those involved with or considering the use of AVO/A inversion, fracture/stress characterization analyses, or interpretation in gas-obscured reservoirs.

Book Reservoir Characterization

Download or read book Reservoir Characterization written by Fred Aminzadeh and published by John Wiley & Sons. This book was released on 2022-01-06 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: RESERVOIR CHARACTERIZATION The second volume in the series, “Sustainable Energy Engineering,” written by some of the foremost authorities in the world on reservoir engineering, this groundbreaking new volume presents the most comprehensive and updated new processes, equipment, and practical applications in the field. Long thought of as not being “sustainable,” newly discovered sources of petroleum and newly developed methods for petroleum extraction have made it clear that not only can the petroleum industry march toward sustainability, but it can be made “greener” and more environmentally friendly. Sustainable energy engineering is where the technical, economic, and environmental aspects of energy production intersect and affect each other. This collection of papers covers the strategic and economic implications of methods used to characterize petroleum reservoirs. Born out of the journal by the same name, formerly published by Scrivener Publishing, most of the articles in this volume have been updated, and there are some new additions, as well, to keep the engineer abreast of any updates and new methods in the industry. Truly a snapshot of the state of the art, this groundbreaking volume is a must-have for any petroleum engineer working in the field, environmental engineers, petroleum engineering students, and any other engineer or scientist working with reservoirs. This outstanding new volume: Is a collection of papers on reservoir characterization written by world-renowned engineers and scientists and presents them here, in one volume Contains in-depth coverage of not just the fundamentals of reservoir characterization, but the anomalies and challenges, set in application-based, real-world situations Covers reservoir characterization for the engineer to be able to solve daily problems on the job, whether in the field or in the office Deconstructs myths that are prevalent and deeply rooted in the industry and reconstructs logical solutions Is a valuable resource for the veteran engineer, new hire, or petroleum engineering student

Book Seismic Reservoir Characterization of the Haynesville Shale

Download or read book Seismic Reservoir Characterization of the Haynesville Shale written by Meijuan Jiang and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation focuses on interpreting the spatial variations of seismic amplitude data as a function of rock properties for the Haynesville Shale. To achieve this goal, I investigate the relationships between the rock properties and elastic properties, and calibrate rock-physics models by constraining both P- and S-wave velocities from well log data. I build a workflow to estimate the rock properties along with uncertainties from the P- and S-wave information. I correlate the estimated rock properties with the seismic amplitude data quantitatively. The rock properties, such as porosity, pore shape and composition, provide very useful information in determining locations with relatively high porosities and large fractions of brittle components favorable for hydraulic fracturing. Here the brittle components will have the fractures remain opened for longer time than the other components. Porosity helps to determine gas capacity and the estimated ultimate recovery (EUR); composition contributes to understand the brittle/ductile strength of shales, and pore shape provides additional information to determine the brittle/ductile strength of the shale. I use effective medium models to constrain P- and S-wave information. The rock-physics model includes an isotropic and an anisotropic effective medium model. The isotropic effective medium model provides a porous rock matrix with multiple mineral phases and pores with different aspect ratios. The anisotropic effective medium model provides frequency- and pore-pressure-dependent anisotropy. I estimate the rock properties with uncertainties using grid searching, conditioned by the calibrated rock-physics models. At well locations, I use the sonic log as input in the rock-physics models. At areas away from the well locations, I use the prestack seismic inverted P- and S-impedances as input in the rock-physics models. The estimated rock properties are correlated with the seismic amplitude data and help to interpret the spatial variations observed from seismic data. I check the accuracy of the estimated rock properties by comparing the elastic properties from seismic inversion and the ones derived from estimated rock properties. Furthermore, I link the estimated rock properties to the microstructure images and interpret the modeling results using observations from microstructure images. The characterization contributes to understand what causes the seismic amplitude variations for the Haynesville Shale. The same seismic reservoir characterization procedure could be applied to other unconventional gas shales.

Book Study of Induced Seismicity for Reservoir Characterization

Download or read book Study of Induced Seismicity for Reservoir Characterization written by Junlun Li (Ph. D.) and published by . This book was released on 2013 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, each of which focuses on a different aspect of fractures/faults and the resulting seismicity. In general, the thesis work discusses reservoir characterization from two aspects: 1) understanding fractures and faults in reservoirs as seismic sources with induced seismicity, and then inferring other properties of the reservoirs, such as stress regime and velocity structure (Chapters 2, 3, 4); 2) understanding the fractures in reservoirs as seismic scatterers (Chapter 5). First, I introduce a new method to determine the source mechanisms of the induced earthquakes by incorporating high frequency waveform matching, first P-arrival polarities and average S/P amplitude ratios. The method is applied to 40 induced earthquakes from an oil/gas field in Oman monitored by a sparse near-surface seismic network and a deep borehole seismic network. The majority of the events have a strike direction parallel with the major NE-SW faults in the region, and some events trend parallel with the NW-SE conjugate faults. The results are consistent with the in-situ well breakout measurements and the current knowledge of the stress direction of this region. The source mechanisms of the studied events together with the hypocenter distribution indicate that the microearthquakes are caused by the reactivation of preexisting faults. Then I introduce a new method to locate microseismic events induced by hydraulic fracturing with simultaneous anisotropic velocity inversion using differential arrival times and differential back azimuths. We derive analytical sensitivities for the elastic moduli (Cij) and layer thickness L for the anisotropic velocity inversion. The method is then applied to a microseismic dataset monitoring a Middle Bakken completion in the Beaver Lodge area of North Dakota. Our results show: 1) moderate-to-strong anisotropy exists in all studied sedimentary layers, especially in both the Upper Bakken and Lower Bakken shale formations, where the Thomsen parameters (E and y) can be over 40%; 2) all events selected for high signal-to-noise ratio and used for the joint velocity inversion are located in the Bakken and overlying Lodgepole formations, i.e., no strong events are located in the Three Forks formation below the Bakken; 3) more than half of the strong events are in two clusters at about 100 and 150 meters above the Middle Bakken. Re-occurrence of strong, closely clustered events suggests activation of natural fractures or faults in the Lodgepole formation. Finally, I introduce a new hybrid method to model the shear (SH) wave scattering from arbitrarily shaped fractures embedded in a heterogeneous medium by coupling the boundary element method (BEM) and the finite difference method (FDM) in the frequency domain. The hybrid method can calculate scattering from arbitrarily shaped fractures very rapidly, thus Monte Carlo simulations for characterizing the statistics of fracture attributes can be performed efficiently. The advantages of the hybrid method are demonstrated by modeling waves scattered from tilted fractures embedded in complex media. Interesting behaviors of the scattered waves, such as frequency shift with the scattering order and coherent pattern of scattered waves through strong heterogeneities, are observed. This method can be used to analyze and interpret the scattered coda waves in the microseismic observations, e.g., the reverberating multiples in the Bakken microseismic data which cannot be explained by the determined layered anisotropic velocity model alone.

Book A Practical Guide to Seismic Reservoir Characterization

Download or read book A Practical Guide to Seismic Reservoir Characterization written by Timothy Tylor-Jones and published by Springer Nature. This book was released on 2023-01-11 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers in detail the entire workflow for quantitative seismic interpretation of subsurface modeling and characterization. It focusses on each step of the geo-modeling workflow starting from data preconditioning and wavelet extraction, which is the basis for the reservoir geophysics described and introduced in the following chapters. This book allows the reader to get a comprehensive insight of the most common and advanced workflows. It aims at graduate students related to energy (hydrocarbons), CO2 geological storage, and near surface characterization as well as professionals in these industries. The reader benefits from the strong and coherent theoretical background of the book, which is accompanied with real case examples.