EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Neural Networks and Statistical Learning

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Science & Business Media. This book was released on 2013-12-09 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

Book Artificial Neural Networks   ICANN 2007

Download or read book Artificial Neural Networks ICANN 2007 written by Joaquim Marques de Sá and published by Springer. This book was released on 2007-09-14 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second of a two-volume set that constitutes the refereed proceedings of the 17th International Conference on Artificial Neural Networks, ICANN 2007. It features contributions related to computational neuroscience, neurocognitive studies, applications in biomedicine and bioinformatics, pattern recognition, self-organization, text mining and internet applications, signal and times series processing, vision and image processing, robotics, control, and more.

Book Radial Basis Function Networks 1

Download or read book Radial Basis Function Networks 1 written by Robert J.Howlett and published by Springer Science & Business Media. This book was released on 2001-03-27 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Radial Basis Function (RBF) neural network has gained in popularity over recent years because of its rapid training and its desirable properties in classification and functional approximation applications. RBF network research has focused on enhanced training algorithms and variations on the basic architecture to improve the performance of the network. In addition, the RBF network is proving to be a valuable tool in a diverse range of application areas, for example, robotics, biomedical engineering, and the financial sector. The two volumes provide a comprehensive survey of the latest developments in this area. Volume 1 covers advances in training algorithms, variations on the architecture and function of the basis neurons, and hybrid paradigms, for example RBF learning using genetic algorithms. Both volumes will prove extremely useful to practitioners in the field, engineers, researchers and technically accomplished managers.

Book Proceedings of the International Conference on Intelligent Vision and Computing  ICIVC 2021

Download or read book Proceedings of the International Conference on Intelligent Vision and Computing ICIVC 2021 written by Harish Sharma and published by Springer Nature. This book was released on 2022-03-23 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers outstanding research papers presented at the International Conference on Intelligent Vision and Computing (ICIVC 2021), held online during October 03–04, 2021. ICIVC 2021 is organised by Sur University, Oman. The book presents novel contributions in intelligent vision and computing and serves as reference material for beginners and advanced research. The topics covered are intelligent systems, intelligent data analytics and computing, intelligent vision and applications collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal natural language processing.

Book Radial Basis Function Neural Networks with Sequential Learning

Download or read book Radial Basis Function Neural Networks with Sequential Learning written by N. Sundararajan and published by World Scientific. This book was released on 1999 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review of radial basis founction (RBF) neural networks. A novel sequential learning algorithm for minimal resource allocation neural networks (MRAN). MRAN for function approximation & pattern classification problems; MRAN for nonlinear dynamic systems; MRAN for communication channel equalization; Concluding remarks; A outline source code for MRAN in MATLAB; Bibliography; Index.

Book An Introduction to Neural Network Methods for Differential Equations

Download or read book An Introduction to Neural Network Methods for Differential Equations written by Neha Yadav and published by Springer. This book was released on 2015-02-26 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field. Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source.

Book 2020 IEEE 9th Data Driven Control and Learning Systems Conference  DDCLS

Download or read book 2020 IEEE 9th Data Driven Control and Learning Systems Conference DDCLS written by IEEE Staff and published by . This book was released on 2020-11-20 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Data driven control and learning has been developed quickly both in theory and applications recently The deep involvement of information science in practical processes poses enormous challenges to the existing control science and engineering due to their size, distributed nature and complexity Modeling these processes accurately using first principles or identification is almost impossible although these plants produce huge amount of operation data in every moment The high tech hardware software and the cloud computing enable us to perform complex real time computation, which makes implementation of data driven control and method for these complex practical plants possible It would be very significant if we can learn the systems behaviors, discover the relationship of system variables by making full use of on line or off line process data, to directly design controller, predict and assess system states, make decisions, perform real time optimization and conduct fault diagnosis

Book Nonlinear System Identification

Download or read book Nonlinear System Identification written by Oliver Nelles and published by Springer Nature. This book was released on 2020-09-09 with total page 1235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice. Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications. In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and modern structure optimization techniques, a much broader class of systems can now be handled. Although one major aspect of nonlinear systems is that virtually every one is unique, tools have since been developed that allow each approach to be applied to a wide variety of systems.

Book Unsupervised Learning Algorithms

Download or read book Unsupervised Learning Algorithms written by M. Emre Celebi and published by Springer. This book was released on 2016-04-29 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field.

Book Radial Basis Function  RBF  Neural Network Control for Mechanical Systems

Download or read book Radial Basis Function RBF Neural Network Control for Mechanical Systems written by Jinkun Liu and published by Springer Science & Business Media. This book was released on 2013-01-26 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.

Book Advanced Models of Neural Networks

Download or read book Advanced Models of Neural Networks written by Gerasimos G. Rigatos and published by Springer. This book was released on 2014-08-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

Book Neural Networks and Deep Learning

Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Book Neural Networks and Statistical Learning

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Nature. This book was released on 2019-09-12 with total page 996 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Book Artificial Neural Networks for Engineers and Scientists

Download or read book Artificial Neural Networks for Engineers and Scientists written by S. Chakraverty and published by CRC Press. This book was released on 2017-07-20 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied.

Book Second Order Methods for Neural Networks

Download or read book Second Order Methods for Neural Networks written by Adrian J. Shepherd and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: About This Book This book is about training methods - in particular, fast second-order training methods - for multi-layer perceptrons (MLPs). MLPs (also known as feed-forward neural networks) are the most widely-used class of neural network. Over the past decade MLPs have achieved increasing popularity among scientists, engineers and other professionals as tools for tackling a wide variety of information processing tasks. In common with all neural networks, MLPsare trained (rather than programmed) to carryout the chosen information processing function. Unfortunately, the (traditional' method for trainingMLPs- the well-knownbackpropagation method - is notoriously slow and unreliable when applied to many prac tical tasks. The development of fast and reliable training algorithms for MLPsis one of the most important areas ofresearch within the entire field of neural computing. The main purpose of this book is to bring to a wider audience a range of alternative methods for training MLPs, methods which have proved orders of magnitude faster than backpropagation when applied to many training tasks. The book also addresses the well-known (local minima' problem, and explains ways in which fast training methods can be com bined with strategies for avoiding (or escaping from) local minima. All the methods described in this book have a strong theoretical foundation, drawing on such diverse mathematical fields as classical optimisation theory, homotopic theory and stochastic approximation theory.

Book Advances in Neural Networks

Download or read book Advances in Neural Networks written by Fuchun Sun and published by Springer Science & Business Media. This book was released on 2008-09-08 with total page 939 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Bayreuth University, Germany), Jennie Si (Arizona State University, USA), and Hang Li (MicrosoftResearchAsia, China). Besides the regularsessions andpanels, ISNN 2008 also featured four special sessions focusing on some emerging topics.

Book Advances in Biometrics

    Book Details:
  • Author : G.R. Sinha
  • Publisher : Springer Nature
  • Release : 2019-12-13
  • ISBN : 3030304361
  • Pages : 360 pages

Download or read book Advances in Biometrics written by G.R. Sinha and published by Springer Nature. This book was released on 2019-12-13 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a framework for robust and novel biometric techniques, along with implementation and design strategies. The theory, principles, pragmatic and modern methods, and future directions of biometrics are presented, along with in-depth coverage of biometric applications in driverless cars, automated and AI-based systems, IoT, and wearable devices. Additional coverage includes computer vision and pattern recognition, cybersecurity, cognitive computing, soft biometrics, and the social impact of biometric technology. The book will be a valuable reference for researchers, faculty, and practicing professionals working in biometrics and related fields, such as image processing, computer vision, and artificial intelligence. Highlights robust and novel biometrics techniques Provides implementation strategies and future research directions in the field of biometrics Includes case studies and emerging applications