EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling and Simulation of Lithium ion Power Battery Thermal Management

Download or read book Modeling and Simulation of Lithium ion Power Battery Thermal Management written by Junqiu Li and published by Springer Nature. This book was released on 2022-05-09 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the thermal management technology of lithium-ion batteries for vehicles. It introduces the charging and discharging temperature characteristics of lithium-ion batteries for vehicles, the method for modeling heat generation of lithium-ion batteries, experimental research and simulation on air-cooled and liquid-cooled heat dissipation of lithium-ion batteries, lithium-ion battery heating method based on PTC and wide-line metal film, self-heating using sinusoidal alternating current. This book is mainly for practitioners in the new energy vehicle industry, and it is suitable for reading and reference by researchers and engineering technicians in related fields such as new energy vehicles, thermal management and batteries. It can also be used as a reference book for undergraduates and graduate students in energy and power, electric vehicles, batteries and other related majors.

Book Thermal Management of Electric Vehicle Battery Systems

Download or read book Thermal Management of Electric Vehicle Battery Systems written by Ibrahim Din¿er and published by John Wiley & Sons. This book was released on 2017-03-20 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Management of Electric Vehicle Battery Systems provides a thorough examination of various conventional and cutting edge electric vehicle (EV) battery thermal management systems (including phase change material) that are currently used in the industry as well as being proposed for future EV batteries. It covers how to select the right thermal management design, configuration and parameters for the users’ battery chemistry, applications and operating conditions, and provides guidance on the setup, instrumentation and operation of their thermal management systems (TMS) in the most efficient and effective manner. This book provides the reader with the necessary information to develop a capable battery TMS that can keep the cells operating within the ideal operating temperature ranges and uniformities, while minimizing the associated energy consumption, cost and environmental impact. The procedures used are explained step-by-step, and generic and widely used parameters are utilized as much as possible to enable the reader to incorporate the conducted analyses to the systems they are working on. Also included are comprehensive thermodynamic modelling and analyses of TMSs as well as databanks of component costs and environmental impacts, which can be useful for providing new ideas on improving vehicle designs. Key features: Discusses traditional and cutting edge technologies as well as research directions Covers thermal management systems and their selection for different vehicles and applications Includes case studies and practical examples from the industry Covers thermodynamic analyses and assessment methods, including those based on energy and exergy, as well as exergoeconomic, exergoenvironmental and enviroeconomic techniques Accompanied by a website hosting codes, models, and economic and environmental databases as well as various related information Thermal Management of Electric Vehicle Battery Systems is a unique book on electric vehicle thermal management systems for researchers and practitioners in industry, and is also a suitable textbook for senior-level undergraduate and graduate courses.

Book Thermal Management for Batteries

Download or read book Thermal Management for Batteries written by Hafiz Muhammad Ali and published by Elsevier. This book was released on 2024-03-15 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Management of Batteries presents a comprehensive examination of the various conventional and emerging technologies used for thermal management of batteries and electronics. With an emphasis on advanced nanofluids, the book provides step-by-step guidance on advanced techniques at the component and system level for both active and passive technologyStarting with an overview of the fundamentals, each chapter quickly builds into a comprehensive treatment of up-to-date technologies. The first part of the book discusses advanced battery technologies, while the second part addresses the design and performance optimization of battery thermal management systems. Power density and fast charging mechanisms of batteries are considered, as are role of thermal management systems on performance enhancement. The book discusses the design selection of various thermal management systems, parameters selection for different configurations, the operating conditions for different battery types, the setups used for experimentation and instrumentation, and the operation of thermal management systems. Advanced techniques such as heat pipes, phase change materials, nanofluids, novel heat sinks, and two phase flow loops are examined in detail.Presenting the fundamentals through to the latest developments alongside step-by-step guidance, mathematical models, schematic diagrams, and experimental data, Thermal Management of Batteries is an invaluable and comprehensive reference for graduates, researchers, and practicing engineers working in the field of battery thermal management, and offers valuable solutions to key thermal management problems that will be of interest to anyone working on energy and thermal heat systems. - Critically examines the components of batteries systems and their thermal energy generation - Analyzes system scale integration of battery components with optimization and better design impact - Explores the modeling aspects and applications of nanofluid technology and PCMs, as well as the utilization of machine learning techniques - Provides step-by-step guidance on techniques in each chapter that are supported by mathematical models, schematic diagrams, and experimental data

Book An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

Download or read book An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs written by and published by . This book was released on 1999 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system usingliquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM.

Book Development and Modeling of Novel Battery Thermal Management Systems for Electric and Hybrid Electric Vehicles

Download or read book Development and Modeling of Novel Battery Thermal Management Systems for Electric and Hybrid Electric Vehicles written by Maan Al-Zareer and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This thesis studies, develops and models novel battery thermal management systems for the battery packs in hybrid electric vehicles and electric vehicles. The systems' thermal performances are assessed through thermal and electrochemical models. The performances of the proposed systems are investigated in terms of various performance measures including the maximum temperature in the pack and the temperature distribution throughout the battery pack and through each battery. The results show that pool based systems achieve better performance for cylindrical battery packs than for prismatic battery packs. For a pool system, covering 30% of the battery height reduces the maximum battery temperature by 28% to 40% depending on the fuel type for a high intensity cycle. To achieve 28% to 40% reduction in the prismatic battery maximum temperature from the case where there is no cooling, the pool system has to cover 80% of the battery height. The best performing system for prismatic battery packs is the tube based system, where the aluminum cold plate has tubes completely filled with coolant to maintain the battery temperature within range needed for the best performance possible by the system. The tube cold plate based system maintains 80% less coolant in the battery pack at a time than the direct contact pool based system while achieving a higher performance in terms of the maximum battery temperature and the maximum temperature difference across the battery pack. The response time for the proposed systems reached nearly 10 times faster than liquid and air systems proposed in the literature. Compared with the literature the pool based system response was 1.7% of the cycle time compared to around 17% for the cycle time for the mini channel cold plate cooling system.

Book Development of Evaporative Cooling Battery Thermal Management System for Electric Vehicles

Download or read book Development of Evaporative Cooling Battery Thermal Management System for Electric Vehicles written by Ahmad Hilmi bin Khalid and published by . This book was released on 2014 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Battery pack needs to generate a high output within a very short time to meet the power demand of an electric vehicle when it is in acceleration. High discharge current causes significant warming of the Li-ion cells due to internal resistance within the cells. LiFePO4 batteries, however, can be used efficiently only within an operating temperature in the range of 20oC to 40oC. The life span and lifecycle of the battery will reduced significantly if the temperature goes above the recommended range. The rationale of this study is to develop an innovative evaporative cooling battery thermal management system (EC-BThMS) to control the battery temperature in the range of 20oC to 40oC. The simplified mathematical equations have been developed in this study for the kinematics analysis and simulation to investigate the temperature profile of the battery based on discharge current drawn, total heat generation and total heat dissipation from the battery. The performance investigation of the EC-BThMS has been conducted both theoretically and experimentally during discharging mode. Theoretically, it was found that the battery temperature varies from 26.5oCto 31oCfor discharge current in the range of 40 A to 100 A. Experimentally, testing results in IIUM campus road found that the battery temperature varies from 28oC to 34oC for discharge current in the range of 35 A to 120 A. While testing results in Sepang International Circuit (SIC) showed that the battery temperature was in the range of 26oC to 35oCfor discharge current in the range of 60 A to 80 A. The performance of developed EC-BThMS in SIC has also been compared with two types of air cooling battery thermal management systems (AC-BThMS) used in others Proton Saga EV. It was found that the Proton Saga EV with EC-BThMS can save 17.69% more energy than with AC-BThM 1 and 23% than with AC-BThMS 2. The correlations between the measured and predicted values of temperature profiles of the battery during operation have been found to be 97.3%. This is indicates that the predicted data over the measured data have a closed agreement and thus, substantially verified the mathematical model.

Book Advanced Battery Thermal Management for Electrical drive Vehicles Using Reciprocating Cooling Flow and Spatial resolution  Lumped capacitance Thermal Model

Download or read book Advanced Battery Thermal Management for Electrical drive Vehicles Using Reciprocating Cooling Flow and Spatial resolution Lumped capacitance Thermal Model written by Rajib Mahamud and published by . This book was released on 2011 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The time-efficient yet accurate computational model for the battery thermal management system is essential to improve the performance, safety, and life time of the battery systems. In this analysis, the thermal management system is divided into two different perspectives: pack level and cell-level thermal management system. For the pack level modeling, a new battery thermal management method using a reciprocating air flow for cylindrical Li-ion (LiMn 2 O4 /C) cells was numerically analyzed using (i) a two-dimensional Computational Fluid Dynamics (CFD) model and (ii) a lumped-capacitance thermal model for battery cells and a flow network model. The results of the CFD model were validated with the experimental results of in-line tube-bank systems which approximates the battery cell arrangement considered for this study. The numerical results showed that the reciprocating flow can reduce the cell temperature difference of the battery system by about 4°C (72 % reduction) and the maximum cell temperature by 1.5°C for a reciprocation period of 120 seconds as compared with the uni-directional flow case. Such temperature improvement attributes to the heat redistribution and disturbance of the boundary layers on the formed on the cells due to the periodic flow reversal. From the cell level concern, the spatial-resolution, lumped-capacitance thermal models for cylindrical battery cells under high Biot number (Bi>1) conditions where the classical lumped-capacitance thermal model is inapplicable because of the significant temperature variation in the battery cells was presented in this analysis. The improved lumped-capacitance thermal models were formulated using first- and second-order Hermite integral approximations. For a validation of the results from the lumped-capacitance models, one-dimensional, transient analytical (exact) solutions using the Green function were obtained for the cylindrical Li-ion battery cells. It was found from the comparison of the results from the computational models that the spatial-resolution, lumped-capacitance thermal models accurately predict the temperatures (core, skin and area-averaged) of the battery cell under various battery duty cycles for a wide range of the Biot numbers covering air cooling to liquid cooling conditions. The battery heat generation was approximated by uniform volumetric joule and reversible (entropic) losses.

Book Development  Characterization    Implementation of Phase change Material Cold Plates for Hybrid electric Vehicle Battery System

Download or read book Development Characterization Implementation of Phase change Material Cold Plates for Hybrid electric Vehicle Battery System written by Kevin Cwiok and published by . This book was released on 2016 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the regulations on internal combustion engine vehicles, there is a large demand of hybrid and electric vehicles with large battery packs as Energy Storage Systems (ESS) capable of long ranges and decreased emissions. These battery packs output large heat loads during charge-depletion mode and currently require activity cooling to keep the batteries within operating conditions. The current systems relied on to achieve this are the air and liquid cooled thermal management systems. A recent alternative approach to current cooling for ESS thermal management is the use of phase-change materials (PCMs). PCMs regulate the temperature of the ESS by leveraging the latent heat of fusion to absorb large amounts of energy at constant temperature while changing phase from solid to liquid. While PCMs have large heat capacities, the downside is their low thermal conductivity which cases them to melt unevenly, which is a main reason PCM is not ideal for cooling systems. The study will involve fully investigating the use PCM into a hybrid-electric vehicle battery thermal management system. The proposed methodology is to mix thermal conductivity enhancing material, loose carbon fibers, into the PCM to spread the heat absorbed more evenly throughout the entire mass. This material matrix characterized in order to determine the necessary material and thermal properties to justify its use and implantation in the EcoEagles 2016 Chevrolet Camaro for vehicle testing and validations. Results obtained during multiple vehicle tests have demonstrated that the PCM has successfully kept the battery pack at a safe operating condition of under 45°C. This was done passively resulting in a reduced overall vehicle energy consumption and increased vehicle battery pack efficiency. The study continues by investigating the use of a shape-stabilized phase-change material cold plate that is capable of addressing several issues that are present with the bulk PCM plate in its current state on the vehicle.

Book Dual Purpose Cooling Plates for Thermal Management of Li ion Batteries During Normal Operation and Thermal Runaway

Download or read book Dual Purpose Cooling Plates for Thermal Management of Li ion Batteries During Normal Operation and Thermal Runaway written by Abdul Haq Mohammed and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Battery Thermal Management Systems are necessary for the overall efficiency and life cycle of vehicle as well safety of passengers and vehicle, as elevated operating temperatures have adverse effect on the efficiency, life cycle and safety of the Li-ion battery packs. The operating temperature prescribed by many studies for improved performance and better life cycle of Li-ion batteries is around 25° C. In some worst case scenarios, high operating temperature may lead to thermal runaway in the battery, causing immense amount of heat generation, even leading to an explosion. To avoid all these dangerous events, battery thermal management is utilized to regulate the temperature of the battery pack. In this thesis, a novel battery thermal management system based on liquid cooling principle is proposed. The system involves dual purpose cooling plate for prismatic Li-ion batteries, which can maintain the temperature under normal conditions as well as mitigate the heat generated during thermal runaway. An experiment was performed on the prismatic Li-ion battery to measure the heat generation trends. The battery was discharged at 5C to replicate aggressive conditions. The data for maximum heat flux generated in the Li-ion battery was obtained. An estimated amount of heat generated during thermal runaway was calculated. A conjugate heat transfer method was used to simulate the cooling plates for normal operation and thermal runaway. The plates were simulated with two flow rates for normal operation and three flow rates for thermal runaway. Three different designs of cooling plates were compared on the basis of surface temperature, pressure drop and flow rate. The final design was selected based on the comparison with the rest of the cooling plates. The selected cooling plate can: Maintain the temperature of battery below 25°C during normal operation. Dissipate the maximum possible heat generated during thermal runaway and bring the temperature to less than 80°C. Maintain least possible pressure drop in both conditions. A stress and modal analysis was performed on the final cooling plate to analyze the structural integrity of the design. The selected cooling plate porotype was manufactured.

Book Battery Management System for Future Electric Vehicles

Download or read book Battery Management System for Future Electric Vehicles written by Dirk Söffker and published by MDPI. This book was released on 2020-11-09 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The future of electric vehicles relies nearly entirely on the design, monitoring, and control of the vehicle battery and its associated systems. Along with an initial optimal design of the cell/pack-level structure, the runtime performance of the battery needs to be continuously monitored and optimized for a safe and reliable operation and prolonged life. Improved charging techniques need to be developed to protect and preserve the battery. The scope of this Special Issue is to address all the above issues by promoting innovative design concepts, modeling and state estimation techniques, charging/discharging management, and hybridization with other storage components.

Book A multifactorial analysis of thermal management concepts for high voltage battery systems

Download or read book A multifactorial analysis of thermal management concepts for high voltage battery systems written by Joshua Smith and published by Cuvillier Verlag. This book was released on 2023-06-23 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research presents a method for efficiently and reproducibly comparing diverse battery thermal management concepts in an early stage of development to assist in battery system design. The basis of this method is a hardware-based thermal simulation model of a prismatic Lithium-Ion battery, called the Smart Battery Cell (SBC). By eliminating the active chemistry, enhanced reproducibility of the experimental boundary conditions and increased efficiency of the experimental trials are realized. Additionally, safety risks associated with Lithium-Ion cells are eliminated, making the use of the SBC possible with thermal management systems in an early state of developed and without costly safety infrastructure. The integration of thermocouples leaves the thermal contact surface undisturbed, allowing the SBC to be integrated into diverse thermal management systems.

Book Advances in Battery Technologies for Electric Vehicles

Download or read book Advances in Battery Technologies for Electric Vehicles written by Bruno Scrosati and published by Woodhead Publishing. This book was released on 2015-05-25 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. - Provides an in-depth look into new research on the development of more efficient, long distance travel batteries - Contains an introductory section on the market for battery and hybrid electric vehicles - Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries

Book Annual Index abstracts of SAE Technical Papers

Download or read book Annual Index abstracts of SAE Technical Papers written by and published by . This book was released on 2002 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1997 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Analysis of Unsteady Heat Transfer for Thermal Management

Download or read book Numerical Analysis of Unsteady Heat Transfer for Thermal Management written by and published by . This book was released on 2012 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: