Download or read book Seasonal Adjustment Methods and Real Time Trend Cycle Estimation written by Estela Bee Dagum and published by Springer. This book was released on 2016-06-20 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies. Several real-world cases illustrate each method and real data examples can be followed throughout the text. The trend-cycle estimation is presented using nonparametric techniques based on moving averages, linear filters and reproducing kernel Hilbert spaces, taking recent advances into account. The book provides a systematical treatment of results that to date have been scattered throughout the literature. Seasonal adjustment and real time trend-cycle prediction play an essential part at all levels of activity in modern economies. They are used by governments to counteract cyclical recessions, by central banks to control inflation, by decision makers for better modeling and planning and by hospitals, manufacturers, builders, transportation, and consumers in general to decide on appropriate action. This book appeals to practitioners in government institutions, finance and business, macroeconomists, and other professionals who use economic data as well as academic researchers in time series analysis, seasonal adjustment methods, filtering and signal extraction. It is also useful for graduate and final-year undergraduate courses in econometrics and time series with a good understanding of linear regression and matrix algebra, as well as ARIMA modelling.
Download or read book Seasonal Adjustment with the X 11 Method written by Dominique Ladiray and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most widely used statistical method in seasonal adjustment is implemented in the X-11 Variant of the Census Method II Seasonal Adjustment Program. Developed by the US Bureau of the Census, it resulted in the X-11-ARIMA software and the X-12-ARIMA. While these integrate parametric methods, they remain close to the initial X-11 method, and it is this "core" that Seasonal Adjustment with the X-11 Method focuses on. It will be an important reference for government agencies, and other serious users of economic data.
Download or read book Economic Time Series written by William R. Bell and published by CRC Press. This book was released on 2018-11-14 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economic Time Series: Modeling and Seasonality is a focused resource on analysis of economic time series as pertains to modeling and seasonality, presenting cutting-edge research that would otherwise be scattered throughout diverse peer-reviewed journals. This compilation of 21 chapters showcases the cross-fertilization between the fields of time s
Download or read book Seasonality in Regression written by Svend Hylleberg and published by Academic Press. This book was released on 2014-05-10 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seasonality in Regression presents the problems of seasonality in economic regression models. This book discusses the procedures that may have application in practical econometric work. Organized into eight chapters, this book begins with an overview of the tremendous increase in the computational capabilities made by the development of the electronic computer that has profound implications for the way seasonality is handled by economists. This text then examines some seasonal models and their characteristics. Other chapters consider the most frequently applied evaluation criteria and appraise the values in the applications. This book discusses as well the frequency domain estimators and provides insight into problems of estimating the disturbance–covariance matrix through the use of the disturbance spectrum. The final chapter deals with the main objective of the treatment of personality to formulate and estimate econometric models. This book is a valuable resource for economists and econometricians who have knowledge of econometrics at an advanced undergraduate or graduate level.
Download or read book Forecasting principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Download or read book Seasonal Adjustment Procedures written by Paul J. Kozlowski and published by . This book was released on 1977 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Econometric Analysis of Seasonal Time Series written by Eric Ghysels and published by Cambridge University Press. This book was released on 2001-06-18 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eric Ghysels and Denise R. Osborn provide a thorough and timely review of the recent developments in the econometric analysis of seasonal economic time series, summarizing a decade of theoretical advances in the area. The authors discuss the asymptotic distribution theory for linear nonstationary seasonal stochastic processes. They also cover the latest contributions to the theory and practice of seasonal adjustment, together with its implications for estimation and hypothesis testing. Moreover, a comprehensive analysis of periodic models is provided, including stationary and nonstationary cases. The book concludes with a discussion of some nonlinear seasonal and periodic models. The treatment is designed for an audience of researchers and advanced graduate students.
Download or read book A Guide to Seasonal Adjustment of Labor Force Data written by John F. Stinson and published by . This book was released on 1982 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Seasonal Adjustment when Both Deterministic and Stochastic Seasonality are Present written by David A. Pierce and published by . This book was released on 1976 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book SAS for Forecasting Time Series Third Edition written by John C. Brocklebank, Ph.D. and published by SAS Institute. This book was released on 2018-03-14 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: To use statistical methods and SAS applications to forecast the future values of data taken over time, you need only follow this thoroughly updated classic on the subject. With this third edition of SAS for Forecasting Time Series, intermediate-to-advanced SAS users—such as statisticians, economists, and data scientists—can now match the most sophisticated forecasting methods to the most current SAS applications. Starting with fundamentals, this new edition presents methods for modeling both univariate and multivariate data taken over time. From the well-known ARIMA models to unobserved components, methods that span the range from simple to complex are discussed and illustrated. Many of the newer methods are variations on the basic ARIMA structures. Completely updated, this new edition includes fresh, interesting business situations and data sets, and new sections on these up-to-date statistical methods: ARIMA models Vector autoregressive models Exponential smoothing models Unobserved component and state-space models Seasonal adjustment Spectral analysis Focusing on application, this guide teaches a wide range of forecasting techniques by example. The examples provide the statistical underpinnings necessary to put the methods into practice. The following up-to-date SAS applications are covered in this edition: The ARIMA procedure The AUTOREG procedure The VARMAX procedure The ESM procedure The UCM and SSM procedures The X13 procedure The SPECTRA procedure SAS Forecast Studio Each SAS application is presented with explanation of its strengths, weaknesses, and best uses. Even users of automated forecasting systems will benefit from this knowledge of what is done and why. Moreover, the accompanying examples can serve as templates that you easily adjust to fit your specific forecasting needs. This book is part of the SAS Press program.
Download or read book A Comparison and Assessment of Seasonal Adjustment Methods for Employment and Unemployment Statistics written by Estela Bee Dagum and published by . This book was released on 1978 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Practical Time Series Analysis Using SAS written by Anders Milhoj and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anders Milhøj's Practical Time Series Analysis Using SAS explains and demonstrates through examples how you can use SAS for time series analysis. It offers modern procedures for forecasting, seasonal adjustments, and decomposition of time series that can be used without involved statistical reasoning. The book teaches, with numerous examples, how to apply these procedures with very simple coding. In addition, it also gives the statistical background for interested readers. Beginning with an introductory chapter that covers the practical handling of time series data in SAS using the TIMESERIES and EXPAND procedures, it goes on to explain forecasting, which is found in the ESM procedure; seasonal adjustment, including trading-day correction using PROC X12; and unobserved component models using the UCM procedure. This book is part of the SAS Press program.
Download or read book Time Series Analysis and Adjustment written by Haim Y Bleikh and published by Gower Publishing, Ltd.. This book was released on 2014-07-28 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Time Series Analysis and Adjustment the authors explain how the last four decades have brought dramatic changes in the way researchers analyze economic and financial data on behalf of economic and financial institutions and provide statistics to whomsoever requires them. Such analysis has long involved what is known as econometrics, but time series analysis is a different approach driven more by data than economic theory and focused on modelling. An understanding of time series and the application and understanding of related time series adjustment procedures is essential in areas such as risk management, business cycle analysis, and forecasting. Dealing with economic data involves grappling with things like varying numbers of working and trading days in different months and movable national holidays. Special attention has to be given to such things. However, the main problem in time series analysis is randomness. In real-life, data patterns are usually unclear, and the challenge is to uncover hidden patterns in the data and then to generate accurate forecasts. The case studies in this book demonstrate that time series adjustment methods can be efficaciously applied and utilized, for both analysis and forecasting, but they must be used in the context of reasoned statistical and economic judgment. The authors believe this is the first published study to really deal with this issue of context.
Download or read book Seasonality in Human Mortality written by Roland Rau and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seasonal fluctuations in mortality are a persistent phenomenon, but variations from culture to culture pose fascinating questions. This book investigates whether sociodemographic and socioeconomic factors play a role as important for seasonal mortality as they do for mortality in general. Using modern statistical methods, the book shows, for example, that in the United States the fluctuations between winter and summer mortality are smaller the more years someone has spent in school.
Download or read book Signal Extraction written by Marc Wildi and published by Springer Science & Business Media. This book was released on 2005-09-06 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material contained in this book originated in interrogations about modern practice in time series analysis. • Why do we use models optimized with respect to one-step ahead foreca- ing performances for applications involving multi-step ahead forecasts? • Why do we infer 'long-term' properties (unit-roots) of an unknown process from statistics essentially based on short-term one-step ahead forecasting performances of particular time series models? • Are we able to detect turning-points of trend components earlier than with traditional signal extraction procedures? The link between 'signal extraction' and the first two questions above is not immediate at first sight. Signal extraction problems are often solved by su- ably designed symmetric filters. Towards the boundaries (t = 1 or t = N) of a time series a particular symmetric filter must be approximated by asymm- ric filters. The time series literature proposes an intuitively straightforward solution for solving this problem: • Stretch the observed time series by forecasts generated by a model. • Apply the symmetric filter to the extended time series. This approach is called 'model-based'. Obviously, the forecast-horizon grows with the length of the symmetric filter. Model-identification and estimation of unknown parameters are then related to the above first two questions. One may further ask, if this approximation problem and the way it is solved by model-based approaches are important topics for practical purposes? Consider some 'prominent' estimation problems: • The determination of the seasonally adjusted actual unemployment rate.
Download or read book Quarterly National Accounts Manual written by Mr.Adriaan M. Bloem and published by International Monetary Fund. This book was released on 2001-05-10 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Manual provides guidance to compilers of national accounts on the concepts, data sources, and compilation methods required for development of a system of quarterly national accounts. More and more countries are recognizing that quarterly national accounts are an essential tool for management and analysis of their economy. The Manual is intended particularly for compilers who already have a knowledge of annual national accounting concepts and methods, and provides techniques for the development of a consistent time series of annual and quarterly accounts. It serves as acomplement to the System of National Accounts 1993, which has only a limited discussion of quarterly accounts, and will also prove useful as a tool for sophisticated users of quarterly national accounts.
Download or read book Analysis of Economic Time Series written by Marc Nerlove and published by Academic Press. This book was released on 2014-05-10 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis of Economic Time Series: A Synthesis integrates several topics in economic time-series analysis, including the formulation and estimation of distributed-lag models of dynamic economic behavior; the application of spectral analysis in the study of the behavior of economic time series; and unobserved-components models for economic time series and the closely related problem of seasonal adjustment. Comprised of 14 chapters, this volume begins with a historical background on the use of unobserved components in the analysis of economic time series, followed by an Introduction to the theory of stationary time series. Subsequent chapters focus on the spectral representation and its estimation; formulation of distributed-lag models; elements of the theory of prediction and extraction; and formulation of unobserved-components models and canonical forms. Seasonal adjustment techniques and multivariate mixed moving-average autoregressive time-series models are also considered. Finally, a time-series model of the U.S. cattle industry is presented. This monograph will be of value to mathematicians, economists, and those interested in economic theory, econometrics, and mathematical economics.