Download or read book Search for Pulsations from a Nearby Millisecond Pulsar and Wasilewski 49 written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-15 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: Five studies are reported in this final report. The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 10(exp 19) CM(exp -2) which facilitates soft X-ray observations. Halpern reported a possible ROSAT Position Sensitive Proportional Counter (PSPC) detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+,5307 in a 23 ksec observation with the ROSAT High Resolution Imager (HRI). A point source is detected within 3" of the radio position. Its count rate of 1.6 +/- 0.3 x 10(exp -3) s(exp -1) corresponds to an unabsorbed 0. 1-2.4 keV flux of 6.4 x 10(exp -14) ergs cm(exp -2) s(exp -1), similar to that reported previously. This counts-to-flux conversion is valid for N(sub H) = 5 x 10(exp 19) cm(exp -2), and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 10(exp 30) ergs s(exp -1) is 5 X 10(exp -4) of the pulsar's spin-down power dot-E, and similar to that of the nearest millisecond pulsar J0437-4715, which is nearly a twin of J1012+5307 in P dot-E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as is favored for PSR J0437-4715, rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821-24. A further test of this interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If fo
Download or read book Recycled Pulsars written by Bryan Anthony Jacoby and published by Universal-Publishers. This book was released on 2008 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present the results of a large-area survey for millisecond pulsars (MSPs) at moderately high galactic latitudes with the 64 m Parkes radio telescope, along with follow-up timing and optical studies of the newly-discovered pulsars and several others. Major results include the first precise measurement of the mass of a fully recycled pulsar and measurement of orbital period decay in a double neutron star binary system allowing a test of general relativity along with improved measurements of the neutron star masses. In a survey of approx. 4,150 square degrees, we discovered 26 previously unknown pulsars, including 7 "recycled" millisecond or binary pulsars. Several of these recycled pulsars are particularly interesting: PSR J1528-3146 is in a circular orbit with a companion of at least 0.94 solar masses; it is a member of the recently recognized class of intermediate mass binary pulsar (IMBP) systems with massive white dwarf companions. We have detected optical counterparts for this and one other IMBP system; taken together with optical detections and non-detections of several similar systems, our results indicate that the characteristic age consistently overestimates the time since the end of mass accretion in these recycled systems. This result implies that the pulsar spin period at the end of the accretion phase is not dramatically shorter than the observed period as is generally assumed. PSR J1600-3053 is among the best high-precision timing pulsars known and should be very useful as part of an ensemble of pulsars used to detect very low frequency gravitational waves. PSR J1738+0333 has an optical counterpart which, although not yet well-studied, has already allowed a preliminary measurement of the system's mass ratio. The most significant discovery of this survey is PSR J1909-3744, a 2.95 ms pulsar in an extremely circular 1.5 d orbit with a low-mass white dwarf companion. Though this system is a fairly typical low-mass binary pulsar (LMBP) system, it has several exceptional qualities: an extremely narrow pulse profile and stable rotation have enabled the most precise long-term timing ever reported, and a nearly edge-on orbit gives rise to a strong Shapiro delay signature in the pulse timing data which has allowed the most precise measurement of the mass of a millisecond pulsar: 1.438 ± 0.024 solar masses. Our accurate parallax distance measurement, d = 1.14 +0.08 / -0.07 kpc, combined with the mass of the optically-detected companion, 0.2038 ± 0.022 solar masses, will provide an important calibration for white dwarf models relevant to other LMBP companions. We have measured the decay of the binary period of the double neutron star system B2127+11C in the globular cluster M15. This has allowed an improved measurement of the mass of the pulsar, 1.3584 ± 0.0097 solar masses, and companion, 1.3544 ± 0.0097 solar masses, as well as a test of general relativity at the 3% level. We find that the proper motions of this pulsar as well as B2127+11A and B2127+11B are consistent with each other and with one published measurement of the cluster proper motion. We have discovered three binary millisecond pulsars in the globular cluster M62 using the 100-m Green Bank Telescope (GBT). These pulsars are the first objects discovered with the GBT. We briefly describe a wide-bandwidth coherent dedispersion backend used for some of the high precision pulsar timing observations presented here.
Download or read book High Energy Emission from Pulsars and their Systems written by Nanda Rea and published by Springer Science & Business Media. This book was released on 2011-02-04 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the inaugural meeting of the Sant Cugat Forum on Astrophysics was to address, in a global context, the current understanding of and challenges in high-energy emissions from isolated and non-isolated neutron stars, and to confront the theoretical picture with observations of both the Fermi satellite and the currently operating ground-based Cherenkov telescopes. Participants have also discussed the prospects for possible observations with planned instruments across the multi-wavelength spectrum (e.g. SKA, LOFAR, E-VLT, IXO, CTA) and how they will impact our theoretical understanding of these systems. In keeping with the goals of the Forum, this book not only represents the proceedings of the meeting, but also a reflection on the state-of-the-art in the topic.