Download or read book Schur Algebras and Representation Theory written by Stuart Martin and published by Cambridge University Press. This book was released on 1993 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Schur algebra is an algebraic system providing a link between the representation theory of the symmetric and general linear groups (both finite and infinite). In the text Dr Martin gives a full, self-contained account of this algebra and these links, covering both the basic theory of Schur algebras and related areas. He discusses the usual representation-theoretic topics such as constructions of irreducible modules, the blocks containing them, their modular characters and the problem of computing decomposition numbers; moreover deeper properties such as the quasi-hereditariness of the Schur algebra are discussed. The opportunity is taken to give an account of quantum versions of Schur algebras and their relations with certain q-deformations of the coordinate rings of the general linear group. The approach is combinatorial where possible, making the presentation accessible to graduate students. This is the first comprehensive text in this important and active area of research; it will be of interest to all research workers in representation theory.
Download or read book Schur Algebras and Representation Theory written by Stuart Martin and published by Cambridge University Press. This book was released on 2009-01-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Schur algebras are an algebraic system that provide a link between the representation theory of the symmetric and general linear groups. Dr. Martin gives a self-contained account of this algebra and those links, covering the basic ideas and their quantum analogues. He discusses not only the usual representation-theoretic topics (such as constructions of irreducible modules, the structure of blocks containing them, decomposition numbers and so on) but also the intrinsic properties of Schur algebras, leading to a discussion of their cohomology theory. He also investigates the relationship between Schur algebras and other algebraic structures. Throughout, the approach uses combinatorial language where possible, thereby making the presentation accessible to graduate students. Some topics require results from algebraic group theory, which are contained in an appendix.
Download or read book Iwahori Hecke Algebras and Schur Algebras of the Symmetric Group written by Andrew Mathas and published by American Mathematical Soc.. This book was released on 1999 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the $q$-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and $q$-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the $q$-Schur algebras. This book is the first of its kind covering the topic. It offers a substantially simplified treatment of the original proofs. The book is a solid reference source for experts. It will also serve as a good introduction to students and beginning researchers since each chapter contains exercises and there is an appendix containing a quick development of the representation theory of algebras. A second appendix gives tables of decomposition numbers.
Download or read book The Q Schur Algebra written by Stephen Donkin and published by Cambridge University Press. This book was released on 1998-12-10 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the representation theory of q-Schur algebras and connections with the representation theory of Hecke algebras and quantum general linear groups. The aim is to present, from a unified point of view, quantum analogs of certain results known already in the classical case. The approach is largely homological, based on Kempf's vanishing theorem for quantum groups and the quasi-hereditary structure of the q-Schur algebras. Beginning with an introductory chapter dealing with the relationship between the ordinary general linear groups and their quantum analogies, the text goes on to discuss the Schur Functor and the 0-Schur algebra. The next chapter considers Steinberg's tensor product and infinitesimal theory. Later sections of the book discuss tilting modules, the Ringel dual of the q-Schur algebra, Specht modules for Hecke algebras, and the global dimension of the q-Schur algebras. An appendix gives a self-contained account of the theory of quasi-hereditary algebras and their associated tilting modules. This volume will be primarily of interest to researchers in algebra and related topics in pure mathematics.
Download or read book Algebras and Representation Theory written by Karin Erdmann and published by Springer. This book was released on 2018-09-07 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.
Download or read book Introduction to Representation Theory written by Pavel I. Etingof and published by American Mathematical Soc.. This book was released on 2011 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Download or read book Representation Theory written by Amritanshu Prasad and published by Cambridge University Press. This book was released on 2015-02-05 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the fundamental results of modern combinatorial representation theory. The exercises are interspersed with text to reinforce readers' understanding of the subject. In addition, each exercise is assigned a difficulty level to test readers' learning. Solutions and hints to most of the exercises are provided at the end.
Download or read book A Journey Through Representation Theory written by Caroline Gruson and published by Springer. This book was released on 2018-10-23 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text covers a variety of topics in representation theory and is intended for graduate students and more advanced researchers who are interested in the field. The book begins with classical representation theory of finite groups over complex numbers and ends with results on representation theory of quivers. The text includes in particular infinite-dimensional unitary representations for abelian groups, Heisenberg groups and SL(2), and representation theory of finite-dimensional algebras. The last chapter is devoted to some applications of quivers, including Harish-Chandra modules for SL(2). Ample examples are provided and some are revisited with a different approach when new methods are introduced, leading to deeper results. Exercises are spread throughout each chapter. Prerequisites include an advanced course in linear algebra that covers Jordan normal forms and tensor products as well as basic results on groups and rings.
Download or read book Representations of Algebraic Groups written by Jens Carsten Jantzen and published by American Mathematical Soc.. This book was released on 2003 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.
Download or read book Representation Theory written by Alexander Zimmermann and published by Springer. This book was released on 2014-08-15 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.
Download or read book Homological Theory of Representations written by Henning Krause and published by Cambridge University Press. This book was released on 2021-11-18 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern developments in representation theory rely heavily on homological methods. This book for advanced graduate students and researchers introduces these methods from their foundations up and discusses several landmark results that illustrate their power and beauty. Categorical foundations include abelian and derived categories, with an emphasis on localisation, spectra, and purity. The representation theoretic focus is on module categories of Artin algebras, with discussions of the representation theory of finite groups and finite quivers. Also covered are Gorenstein and quasi-hereditary algebras, including Schur algebras, which model polynomial representations of general linear groups, and the Morita theory of derived categories via tilting objects. The final part is devoted to a systematic introduction to the theory of purity for locally finitely presented categories, covering pure-injectives, definable subcategories, and Ziegler spectra. With its clear, detailed exposition of important topics in modern representation theory, many of which were unavailable in one volume until now, it deserves a place in every representation theorist's library.
Download or read book Lie Groups Lie Algebras and Representations written by Brian Hall and published by Springer. This book was released on 2015-05-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette
Download or read book Representations of Finite Groups written by Hirosi Nagao and published by Elsevier. This book was released on 2014-05-10 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Representations of Finite Groups provides an account of the fundamentals of ordinary and modular representations. This book discusses the fundamental theory of complex representations of finite groups. Organized into five chapters, this book begins with an overview of the basic facts about rings and modules. This text then provides the theory of algebras, including theories of simple algebras, Frobenius algebras, crossed products, and Schur indices with representation-theoretic versions of them. Other chapters include a survey of the fundamental theory of modular representations, with emphasis on Brauer characters. This book discusses as well the module-theoretic representation theory due to Green and includes some topics such as Burry–Carlson's theorem and Scott modules. The final chapter deals with the fundamental results of Brauer on blocks and Fong's theory of covering, and includes some approaches to them. This book is a valuable resource for readers who are interested in the various approaches to the study of the representations of groups.
Download or read book Introduction to the Representation Theory of Compact and Locally Compact Groups written by Alain Robert and published by Cambridge University Press. This book was released on 1983-02-10 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of their significance in physics and chemistry, representation of Lie groups has been an area of intensive study by physicists and chemists, as well as mathematicians. This introduction is designed for graduate students who have some knowledge of finite groups and general topology, but is otherwise self-contained. The author gives direct and concise proofs of all results yet avoids the heavy machinery of functional analysis. Moreover, representative examples are treated in some detail.
Download or read book Algebraic Combinatorics and Coinvariant Spaces written by Francois Bergeron and published by CRC Press. This book was released on 2009-07-06 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and
Download or read book Representation Theory of Algebraic Groups and Quantum Groups written by Toshiaki Shoji and published by American Mathematical Society(RI). This book was released on 2004 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.
Download or read book Representation Theory of Finite Groups and Associative Algebras written by Charles W. Curtis and published by American Mathematical Soc.. This book was released on 2006 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to various aspects of the representation theory of finite groups. This book covers such topics as general non-commutative algebras, Frobenius algebras, representations over non-algebraically closed fields and fields of non-zero characteristic, and integral representations.