Download or read book Schubert Varieties and Degeneracy Loci written by William Fulton and published by Springer. This book was released on 2006-11-13 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Schubert varieties and degeneracy loci have a long history in mathematics, starting from questions about loci of matrices with given ranks. These notes, from a summer school in Thurnau, aim to give an introduction to these topics, and to describe recent progress on these problems. There are interesting interactions with the algebra of symmetric functions and combinatorics, as well as the geometry of flag manifolds and intersection theory and algebraic geometry.
Download or read book Schubert Varieties and Degeneracy Loci written by William Fulton and published by Lecture Notes in Mathematics. This book was released on 1998-07-16 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Schubert varieties and degeneracy loci have a long history in mathematics, starting from questions about loci of matrices with given ranks. These notes, from a summer school in Thurnau, aim to give an introduction to these topics, and to describe recent progress on these problems. There are interesting interactions with the algebra of symmetric functions and combinatorics, as well as the geometry of flag manifolds and intersection theory and algebraic geometry.
Download or read book Symmetric Functions Schubert Polynomials and Degeneracy Loci written by Laurent Manivel and published by American Mathematical Soc.. This book was released on 2001 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text grew out of an advanced course taught by the author at the Fourier Institute (Grenoble, France). It serves as an introduction to the combinatorics of symmetric functions, more precisely to Schur and Schubert polynomials. Also studied is the geometry of Grassmannians, flag varieties, and especially, their Schubert varieties. This book examines profound connections that unite these two subjects. The book is divided into three chapters. The first is devoted to symmetricfunctions and especially to Schur polynomials. These are polynomials with positive integer coefficients in which each of the monomials correspond to a Young tableau with the property of being ``semistandard''. The second chapter is devoted to Schubert polynomials, which were discovered by A. Lascoux andM.-P. Schutzenberger who deeply probed their combinatorial properties. It is shown, for example, that these polynomials support the subtle connections between problems of enumeration of reduced decompositions of permutations and the Littlewood-Richardson rule, a particularly efficacious version of which may be derived from these connections. The final chapter is geometric. It is devoted to Schubert varieties, subvarieties of Grassmannians, and flag varieties defined by certain incidenceconditions with fixed subspaces. This volume makes accessible a number of results, creating a solid stepping stone for scaling more ambitious heights in the area. The author's intent was to remain elementary: The first two chapters require no prior knowledge, the third chapter uses some rudimentary notionsof topology and algebraic geometry. For this reason, a comprehensive appendix on the topology of algebraic varieties is provided. This book is the English translation of a text previously published in French.
Download or read book Schubert Varieties and Degeneracy Loci written by William Fulton and published by . This book was released on 2014-01-15 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Intersection Theory written by W. Fulton and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the ancient origins of algebraic geometry in the solution of polynomial equations, through the triumphs of algebraic geometry during the last two cen turies, intersection theory has played a central role. Since its role in founda tional crises has been no less prominent, the lack of a complete modern treatise on intersection theory has been something of an embarrassment. The aim of this book is to develop the foundations of intersection theory, and to indicate the range of classical and modern applications. Although a comprehensive his tory of this vast subject is not attempted, we have tried to point out some of the striking early appearances of the ideas of intersection theory. Recent improvements in our understanding not only yield a stronger and more useful theory than previously available, but also make it possible to devel op the subject from the beginning with fewer prerequisites from algebra and algebraic geometry. It is hoped that the basic text can be read by one equipped with a first course in algebraic geometry, with occasional use of the two appen dices. Some of the examples, and a few of the later sections, require more spe cialized knowledge. The text is designed so that one who understands the con structions and grants the main theorems of the first six chapters can read other chapters separately. Frequent parenthetical references to previous sections are included for such readers. The summaries which begin each chapter should fa cilitate use as a reference.
Download or read book Schubert Calculus and Its Applications in Combinatorics and Representation Theory written by Jianxun Hu and published by Springer Nature. This book was released on 2020-10-24 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.
Download or read book Topics in Cohomological Studies of Algebraic Varieties written by Piotr Pragacz and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis
Download or read book Young Tableaux written by William Fulton and published by Cambridge University Press. This book was released on 1997 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes combinatorics involving Young tableaux and their uses in representation theory and algebraic geometry.
Download or read book Real and Complex Singularities written by Terence Gaffney and published by American Mathematical Soc.. This book was released on 2004 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Workshop on Real and Complex Singularities is held every other year at the Instituto de Ciencias Matematicas e de Computacao (Sao Carlos, Brazil) and brings together specialists in the vanguard of singularities and its applications. This volume contains articles contributed by participants of the seventh workshop.
Download or read book Algebraic Cycles Sheaves Shtukas and Moduli written by Piotr Pragacz and published by Springer Science & Business Media. This book was released on 2008-03-12 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Articles examine the contributions of the great mathematician J. M. Hoene-Wronski. Although much of his work was dismissed during his lifetime, it is now recognized that his work offers valuable insight into the nature of mathematics. The book begins with elementary-level discussions and ends with discussions of current research. Most of the material has never been published before, offering fresh perspectives on Hoene-Wronski’s contributions.
Download or read book Equivariant Cohomology in Algebraic Geometry written by David Anderson and published by Cambridge University Press. This book was released on 2023-10-26 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics, this text introduces techniques that are essential in several areas of modern mathematics. With numerous exercises and examples, it covers the core notions and applications of equivariant cohomology.
Download or read book Algebra Arithmetic and Geometry written by Yuri Tschinkel and published by Springer Science & Business Media. This book was released on 2010-08-05 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.
Download or read book The Geometry of Riemann Surfaces and Abelian Varieties written by José María Muñoz Porras and published by American Mathematical Soc.. This book was released on 2006 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the papers in this book deal with the theory of Riemann surfaces (moduli problems, automorphisms, etc.), abelian varieties, theta functions, and modular forms. Some of the papers contain surveys on the recent results in the topics of current interest to mathematicians, whereas others contain new research results.
Download or read book Intersection Theory written by William Fulton and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intersection theory has played a central role in mathematics, from the ancient origins of algebraic geometry in the solutions of polynomial equations to the triumphs of algebraic geometry during the last two centuries. This book develops the foundations of the theory and indicates the range of classical and modern applications. The hardcover edition received the prestigious Steele Prize in 1996 for best exposition.
Download or read book Algebraic Combinatorics and Quantum Groups written by Naihuan Jing and published by World Scientific. This book was released on 2003 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic combinatorics has evolved into one of the most active areas of mathematics during the last several decades. Its recent developments have become more interactive with not only its traditional field representation theory but also algebraic geometry, harmonic analysis and mathematical physics.This book presents articles from some of the key contributors in the area. It covers Hecke algebras, Hall algebras, the Macdonald polynomial and its deviations, and their relations with other fields.
Download or read book Singular Loci of Schubert Varieties written by Sara Sarason and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties – namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables – the latter not to be found elsewhere in the mathematics literature – round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students.
Download or read book The q t Catalan Numbers and the Space of Diagonal Harmonics written by James Haglund and published by American Mathematical Soc.. This book was released on 2008 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.