EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Schedulability in Mixed criticality Systems

Download or read book Schedulability in Mixed criticality Systems written by Rany Kahil and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real-time safety-critical systems must complete their tasks within a given time limit. Failure to successfully perform their operations, or missing a deadline, can have severe consequences such as destruction of property and/or loss of life. Examples of such systems include automotive systems, drones and avionics among others. Safety guarantees must be provided before these systems can be deemed usable. This is usually done through certification performed by a certification authority.Safety evaluation and certification are complicated and costly even for smaller systems.One answer to these difficulties is the isolation of the critical functionality. Executing tasks of different criticalities on separate platforms prevents non-critical tasks from interfering with critical ones, provides a higher guaranty of safety and simplifies the certification process limiting it to only the critical functions. But this separation, in turn, introduces undesirable results portrayed by an inefficient resource utilization, an increase in the cost, weight, size and energy consumption which can put a system in a competitive disadvantage.To overcome the drawbacks of isolation, Mixed Criticality (MC) systems can be used. These systems allow functionalities with different criticalities to execute on the same platform. In 2007, Vestal proposed a model to represent MC-systems where tasks have multiple Worst Case Execution Times (WCETs), one for each criticality level. In addition, correctness conditions for scheduling policies were formally defined, allowing lower criticality jobs to miss deadlines or be even dropped in cases of failure or emergency situations.The introduction of multiple WCETs and different conditions for correctness increased the difficulty of the scheduling problem for MC-systems. Conventional scheduling policies and schedulability tests proved inadequate and the need for new algorithms arose. Since then, a lot of work has been done in this field.In this thesis, we contribute to the study of schedulability in MC-systems. The workload of a system is represented as a set of jobs that can describe the execution over the hyper-period of tasks or over a duration in time. This model allows us to study the viability of simulation-based correctness tests in MC-systems. We show that simulation tests can still be used in mixed-criticality systems, but in this case, the schedulability of the worst case scenario is no longer sufficient to guarantee the schedulability of the system even for the fixed priority scheduling case. We show that scheduling policies are not predictable in general, and define the concept of weak-predictability for MC-systems. We prove that a specific class of fixed priority policies are weakly predictable and propose two simulation-based correctness tests that work for weakly-predictable policies.We also demonstrate that contrary to what was believed, testing for correctness can not be done only through a linear number of preemptions.The majority of the related work focuses on systems of two criticality levels due to the difficulty of the problem. But for automotive and airborne systems, industrial standards define four or five criticality levels, which motivated us to propose a scheduling algorithm that schedules mixed-criticality systems with theoretically any number of criticality levels. We show experimentally that it has higher success rates compared to the state of the art.We illustrate how our scheduling algorithm, or any algorithm that generates a single time-triggered table for each criticality mode, can be used as a recovery strategy to ensure the safety of the system in case of certain failures.Finally, we propose a high level concurrency language and a model for designing an MC-system with coarse grained multi-core interference.

Book Scheduling of Certifiable Mixed criticality Systems

Download or read book Scheduling of Certifiable Mixed criticality Systems written by Dario Socci and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern real-time systems tend to be mixed-critical, in the sense that they integrate on the same computational platform applications at different levels of criticality. Integration gives the advantages of reduced cost, weight and power consumption, which can be crucial for modern applications like Unmanned Aerial Vehicles (UAVs). On the other hand, this leads to major complications in system design. Moreover, such systems are subject to certification, and different criticality levels needs to be certified at different level of assurance. Among other aspects, the real-time scheduling of certifiable mixed critical systems has been recognized to be a challenging problem. Traditional techniques require complete isolation between criticality levels or global certification to the highest level of assurance, which leads to resource waste, thus loosing the advantage of integration. This led to a novel wave of research in the real-time community, and many solutions were proposed. Among those, one of the most popular methods used to schedule such systems is Audsley approach. However this method has some limitations, which we discuss in this thesis. These limitations are more pronounced in the case of multiprocessor scheduling. In this case priority-based scheduling looses some important properties. For this reason scheduling algorithms for multiprocessor mixed-critical systems are not as numerous in literature as the single processor ones, and usually are built on restrictive assumptions. This is particularly problematic since industrial real-time systems strive to migrate from single-core to multi-core and many-core platforms. Therefore we motivate and study a different approach that can overcome these problems.A restriction of practical usability of many mixed-critical and multiprocessor scheduling algorithms is assumption that jobs are independent. In reality they often have precedence constraints. In the thesis we show the mixed-critical variant of the problem formulation and extend the system load metrics to the case of precedence-constraint task graphs. We also show that our proposed methodology and scheduling algorithm MCPI can be extended to the case of dependent jobs without major modification and showing similar performance with respect to the independent jobs case. Another topic we treated in this thesis is time-triggered scheduling. This class of schedulers is important because they considerably reduce the uncertainty of job execution intervals thus simplifying the safety-critical system certification. They also simplify any auxiliary timing-based analyses that may be required to validate important extra-functional properties in embedded systems, such as interference on shared buses and caches, peak power dissipation, electromagnetic interference etc..The trivial method of obtaining a time-triggered schedule is simulation of the worst-case scenario in event-triggered algorithm. However, when applied directly, this method is not efficient for mixed-critical systems, as instead of one worst-case scenario they have multiple corner-case scenarios. For this reason, it was proposed in the literature to treat all scenarios into just a few tables, one per criticality mode. We call this scheduling approach Single Time Table per Mode (STTM) and propose a contribution in this context. In fact we introduce a method that transforms practically any scheduling algorithm into an STTM one. It works optimally on single core and shows good experimental results for multi-cores.Finally we studied the problem of the practical realization of mixed critical systems. Our effort in this direction is a design flow that we propose for multicore mixed critical systems. In this design flow, as the model of computation we propose a network of deterministic multi-periodic synchronous processes. Our approach is demonstrated using a publicly available toolset, an industrial application use case and a multi-core platform.

Book Quality of Service Aware Design and Management of Embedded Mixed Criticality Systems

Download or read book Quality of Service Aware Design and Management of Embedded Mixed Criticality Systems written by Behnaz Ranjbar and published by Springer Nature. This book was released on 2023-10-28 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the challenges associated with efficient Mixed-Criticality (MC) system design. We focus on application analysis through execution time analysis and task scheduling analysis in order to execute more low-criticality tasks in the system, i.e., improving the Quality-of-Service (QoS), while guaranteeing the correct execution of high-criticality tasks. Further, this book addresses the challenge of enhancing QoS using parallelism in multi-processor hardware platforms.

Book Reliable Software Technologies     Ada Europe 2011

Download or read book Reliable Software Technologies Ada Europe 2011 written by Alexander Romanovsky and published by Springer Science & Business Media. This book was released on 2011-06-14 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 16th Ada-Europe International Conference on Reliable Software Technologies, Ada-Europe 2011, held in Edinburgh, UK, on June 20-24, 2011. The revised 12 papers presented together with several invited contributions were carefully reviewed and selected from 30 submissions. Topics of interest to the conference are methods and techniques for software development and maintenance ; software architectures; enabling technologies; software quality; theory and practice of high-integrity systems; embedded systems; mainstream and emerging applications; experience reports; the future of Ada.

Book Mixed criticality Real time Task Scheduling with Graceful Degradation

Download or read book Mixed criticality Real time Task Scheduling with Graceful Degradation written by Samsil Arefin and published by . This book was released on 2018 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The mixed-criticality real-time systems implement functionalities of different degrees of importance (or criticalities) upon a shared platform. In traditional mixed-criticality systems, under a hi mode switch, no guaranteed service is provided to lo-criticality tasks. After a mode switch, only hi-criticality tasks are considered for execution while no guarantee is made to the lo-criticality tasks. However, with careful optimistic design, a certain degree of service guarantee can be provided to lo-criticality tasks upon a mode switch. This concept is broadly known as graceful degradation. Guaranteed graceful degradation provides a better quality of service as well as it utilizes the system resource more efficiently. In this thesis, we study two efficient techniques of graceful degradation. First, we study a mixed-criticality scheduling technique where graceful degradation is provided in the form of minimum cumulative completion rates. We present two easy-to-implement admission-control algorithms to determine which lo-criticality jobs to complete in hi mode. The scheduling is done by following deadline virtualization, and two heuristics are shown for virtual deadline settings. We further study the schedulability analysis and the backward mode switch conditions, which are proposed and proved in (Guo et al., 2018). Next, we present a probabilistic scheduling technique for mixed-criticality tasks on multiprocessor systems where a system-wide permitted failure probability is known. The schedulability conditions are derived along with the processor allocation scheme. The work is extended from (Guo et al., 2015), where the probabilistic model is first introduced for independent task scheduling on a uniprocessor platform. We further consider the failure dependency between tasks while scheduling on multiprocessor platforms. We provide related theoretical analysis to show the correctness of our work. To show the effectiveness of our proposed techniques, we conduct a detailed experimental evaluation under different circumstances"--Abstract, page iii.

Book Precise Energy Efficient Scheduling of Mixed criticality Tasks   Sustainable Mixed criticality Scheduling

Download or read book Precise Energy Efficient Scheduling of Mixed criticality Tasks Sustainable Mixed criticality Scheduling written by Sai Sruti and published by . This book was released on 2018 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In this thesis, the imprecise mixed-criticality model (IMC) is extended to precise scheduling of tasks, and integrated with the dynamic voltage and frequency scaling (DVFS) technique to enable energy minimization. The challenge in precise scheduling of MC systems is to simultaneously guarantee the timing correctness for all tasks, hi and lo, under both pessimistic and optimistic (less pessimistic) assumptions. To the best of knowledge this is the first work to address the integration of DVFS energy conserving techniques with precise scheduling of lo-tasks of the MC model. In this thesis, the utilization based schedulability tests and sufficient conditions for such systems under Earliest Deadline First EDF-VD scheduling policy are presented. Quantitative study in the forms of speedup bound and approximation ratio are also proved for the unified model. Extensive experimental studies are conducted to verify the theoretical results as well as the effectiveness of the proposed algorithm. In safety- critical systems, it is essential to perform schedulability analysis prior to run-time. Parameters characterizing the run-time workload are generated by pessimistic techniques; hence, adopting conservative estimates may result in systems performing much better than anticipated during run-time. This thesis also addresses the following questions associated to the better performance of the task system: (i) How does parameter change affect the schedulability of a task set (system)? (ii) In the event that a mixed-criticality system design is deemed schedulable and specific part/parts of the system are reassigned to be of low-criticality, is the system still safe to run? (iii) If a system is presumed to be non-schedulable, does it invariably benefit to reduce the criticality of some task? To answer these questions, in this thesis, we not only study the property of sustainability with regards to criticality levels, but also revisit sustainability of several uniprocessor and multiprocessor scheduling policies with respect to other parameters"--Abstract, page iii.

Book Scheduling Algorithms for Elastic Mixed criticality Tasks in Multicore Systems  Extended Version

Download or read book Scheduling Algorithms for Elastic Mixed criticality Tasks in Multicore Systems Extended Version written by Hang Su and published by . This book was released on 2013 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Elastic Mixed-Criticality (E-MC) task model and an Early-Release EDF (ER-EDF) scheduling algorithm have been studied to address the service interruption problem for lowcriticality tasks in uniprocessor systems, where the minimum service requirements of low-criticality tasks are guaranteed by their maximum periods. In this paper, focusing on multicore systems, we first investigate and empirically evaluate the schedulability of E-MC tasks under partitioned-EDF (P-EDF) by considering various task-to-core mapping heuristics. Then, to improve the service levels of low-criticality tasks by exploiting slack at runtime, with and without task migrations being considered, we study both global and local early-release schemes. Moreover, considering varied migration overheads between different cores, we propose the multicore-aware and migration constrained globalER schemes. The simulation results show that, compared to the state-of-the-art Global EDF-VD scheduler, P-EDF with various partitioning heuristics can lead to many more schedulable E-MC task sets. Moreover, our proposed global and local ER schemes can significantly improve the execution frequencies (and thus service levels) of low-criticality tasks, while Global EDF-VD may severely affect them by discarding most of their task instances at runtime (especially for systems with more cores). Furthermore, by allowing task migrations, global-ER schemes can dramatically improve low-criticality tasks' service levels for partitionings that do not balance high- and low-criticality tasks among the cores.

Book Mixed Criticality Industrial Wireless Networks

Download or read book Mixed Criticality Industrial Wireless Networks written by Xi Jin and published by Springer Nature. This book was released on 2023-03-13 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book introduces how to manage important tasks in industrial wireless networks. Important tasks must be completed on time and with guaranteed quality; that is the consensus reached by system designers and users. However, for too long, important tasks have often been given unnecessary urgency, and people intuitively believe that important tasks should be executed first so that their performance can be guaranteed. Actually, in most cases, their performance can be guaranteed even if they are executed later, and the “early” resources can be utilized for other, more urgent tasks. Therefore, confusing importance with urgency hinders the proper use of system resources. In 2007, mixed criticality was proposed to indicate that a system may contain tasks of various importance levels. Since then, system designers and users have distinguished between importance and urgency. In the industrial field, due to the harsh environment they operate in, industrial wireless networks’ quality of service (QoS) has always been a bottleneck restricting their applications. Therefore, this book introduces criticality to label important data, which is then allocated more transmission resources, ensuring that important data’s QoS requirements can be met to the extent possible. To help readers understand how to apply mixed-criticality data to industrial wireless networks, the content is divided into three parts. First, we introduce how to integrate the model of mixed-criticality data into industrial wireless networks. Second, we explain how to analyze the schedulability of mixed-criticality data under existing scheduling algorithms. Third, we present a range of novel scheduling algorithms for mixed-criticality data. If you want to improve the QoS of industrial wireless networks, this book is for you.

Book Distributed Real Time Architecture for Mixed Criticality Systems

Download or read book Distributed Real Time Architecture for Mixed Criticality Systems written by Hamidreza Ahmadian and published by CRC Press. This book was released on 2018-09-05 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a cross-domain architecture and design tools for networked complex systems where application subsystems of different criticality coexist and interact on networked multi-core chips. The architecture leverages multi-core platforms for a hierarchical system perspective of mixed-criticality applications. This system perspective is realized by virtualization to establish security, safety and real-time performance. The impact further includes a reduction of time-to-market, decreased development, deployment and maintenance cost, and the exploitation of the economies of scale through cross-domain components and tools. Describes an end-to-end architecture for hypervisor-level, chip-level, and cluster level. Offers a solution for different types of resources including processors, on-chip communication, off-chip communication, and I/O. Provides a cross-domain approach with examples for wind-power, health-care, and avionics. Introduces hierarchical adaptation strategies for mixed-criticality systems Provides modular verification and certification methods for the seamless integration of mixed-criticality systems. Covers platform technologies, along with a methodology for the development process. Presents an experimental evaluation of technological results in cooperation with industrial partners. The information in this book will be extremely useful to industry leaders who design and manufacture products with distributed embedded systems in mixed-criticality use-cases. It will also benefit suppliers of embedded components or development tools used in this area. As an educational tool, this material can be used to teach students and working professionals in areas including embedded systems, computer networks, system architecture, dependability, real-time systems, and avionics, wind-power and health-care systems.

Book Handbook of Scheduling

Download or read book Handbook of Scheduling written by Joseph Y-T. Leung and published by CRC Press. This book was released on 2004-04-27 with total page 1215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides full coverage of the most recent and advanced topics in scheduling, assembling researchers from all relevant disciplines to facilitate new insights. Presented in six parts, these experts provides introductory material, complete with tutorials and algorithms, then examine classical scheduling problems. Part 3 explores scheduling models that originate in areas such as computer science, operations research. The following section examines scheduling problems that arise in real-time systems. Part 5 discusses stochastic scheduling and queueing networks, and the final section discusses a range of applications in a variety of areas, from airlines to hospitals.

Book An Elastic Mixed criticality Task Model and Early release EDF Scheduling Algorithms

Download or read book An Elastic Mixed criticality Task Model and Early release EDF Scheduling Algorithms written by Hang Su and published by . This book was released on 2016 with total page 25 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many algorithms have recently been studied for scheduling mixed-criticality (MC) tasks. However, most existing MC scheduling algorithms guarantee the timely executions of high-criticality (HC) tasks at the expense of discarding low-criticality (LC) tasks, which can cause serious service interruption for such tasks. In this work, aiming at providing guaranteed services for LC tasks, we study an Elastic Mixed-Criticality (E-MC) task model for dual-criticality systems. Specifically, the model allows each LC task to specify its maximum period (i.e., minimum service level) and a set of early-release points. We propose an Early-Release (ER) mechanism that enables LC tasks be released more frequently and thus improve their service levels at runtime, with both conservative and aggressive approaches to exploiting system slack being considered, which is applied to both EDF and preference-oriented earliest-deadline (POED) schedulers. We formally prove the correctness of the proposed ER-EDF scheduler on guaranteeing the timeliness of all tasks through judicious management of the early releases of LC tasks. The proposed model and schedulers are evaluated through extensive simulations. The results show that, by moderately relaxing the service requirements of LC tasks in MC task sets (i.e., by having LC tasks' maximum periods in the E-MC model be 2 to 3 times of their desired MC periods), most transformed E-MC task sets can be successfully scheduled without sacrificing the timeliness of HC tasks. Moreover, with the proposed ER mechanism, the runtime performance of tasks (e.g., execution frequencies of LC tasks, response times and jitters of HC tasks) can be significantly improved under the ER schedulers when compared to that of the state-of-the-art EDF-VD scheduler.

Book An Elastic Mixed criticality Scheduling Framework for Cyber physical Systems

Download or read book An Elastic Mixed criticality Scheduling Framework for Cyber physical Systems written by Hang Su and published by . This book was released on 2015 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the rapid growth of cyber-physical systems (CPS) attracts the research interests from both industrial and academic communities. With increasing needs of executing tasks with multiple-critical levels on a shared computing system, scheduling mixed-criticality tasks while satisfying their specific requirements has been identified as one of the most fundamental issues in CPS. Most existing mixed-criticality scheduling algorithms guarantee higher level worst-case execution times (WCETs) of high-critical tasks at the expense of discarding low-critical tasks, which can cause control system to suffer from significant performance loss. To provide minimal service guarantee for low-critical tasks and stabilize real-time control system, an Elastic Mixed-Criticality (E-MC) task model and the associated early-release EDF (ER-EDF) scheduling algorithm are proposed. In ER-EDF, low-critical tasks are allowed to be released at least once during their maximum periods (i.e., minimal service level) while ensuring the worst-case timing constraints of high-critical tasks are always met. During run-time, slack time generated from high-critical tasks can allow LC tasks to release more frequently, which improves their control performance. The ER-EDF are studied on single and multi-core system. Observing the overheads associated with run-time slack management for early-releases, the E-MC model is extended to allow each low-critical task have a pair of small and large periods, which represent its service guarantees in low and high running modes, respectively. The dynamic-priority (DP) and fixed-priority (FP) scheduling algorithms are proposed for the extended E-MC model (E-MC 2 ), where their schedulabilities are analyzed with demand-bound function (DBF) and WCET response time analysis (RTA) techniques, respectively. In addition, period selection and priority assignment are also investigated for optimizing control performance of real-time CPS.

Book Dependable Embedded Systems

Download or read book Dependable Embedded Systems written by Jörg Henkel and published by Springer Nature. This book was released on 2020-12-09 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems.

Book Multiprocessor Scheduling for Real Time Systems

Download or read book Multiprocessor Scheduling for Real Time Systems written by Sanjoy Baruah and published by Springer. This book was released on 2015-01-02 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems. The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models. New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis. Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

Book Hard Real Time Computing Systems

Download or read book Hard Real Time Computing Systems written by Giorgio C Buttazzo and published by Springer Science & Business Media. This book was released on 2011-09-10 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This updated edition offers an indispensable exposition on real-time computing, with particular emphasis on predictable scheduling algorithms. It introduces the fundamental concepts of real-time computing, demonstrates the most significant results in the field, and provides the essential methodologies for designing predictable computing systems used to support time-critical control applications. Along with an in-depth guide to the available approaches for the implementation and analysis of real-time applications, this revised edition contains a close examination of recent developments in real-time systems, including limited preemptive scheduling, resource reservation techniques, overload handling algorithms, and adaptive scheduling techniques. This volume serves as a fundamental advanced-level textbook. Each chapter provides basic concepts, which are followed by algorithms, illustrated with concrete examples, figures and tables. Exercises and solutions are provided to enhance self-study, making this an excellent reference for those interested in real-time computing for designing and/or developing predictable control applications.

Book Mixed criticality System Design for Real time Scheduling and Routing Upon Platforms with Uncertainties

Download or read book Mixed criticality System Design for Real time Scheduling and Routing Upon Platforms with Uncertainties written by Sudharsan Vaidhun Bhaskar and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finally, we focus on practical improvements to the popular and optimal earliest deadline first scheduling algorithm, upon a uniprocessor setting. Specifically, we develop techniques to quantify and utilize the idle times to handle uncertainties in the form of additional run-time workloads, arbitrary self-suspensions, and execution time estimate overruns.