Download or read book Scattering Absorption and Emission of Light by Small Particles written by Michael I. Mishchenko and published by Cambridge University Press. This book was released on 2002-06-06 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and up-to-date treatment of electromagnetic scattering by small particles.
Download or read book Absorption and Scattering of Light by Small Particles written by Craig F. Bohren and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Absorption and Scattering of Light by Small Particles Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include: * Classical theories of optical properties based on idealized models * Measurements for three representative materials: magnesium oxide, aluminum, and water * An extensive discussion of electromagnetic theory * Numerous exact and approximate solutions to various scattering problems * Examples and applications from physics, astrophysics, atmospheric physics, and biophysics * Some 500 references emphasizing work done since Kerker's 1969 work on scattering theory * Computer programs for calculating scattering by spheres, coated spheres, and infinite cylinders
Download or read book Multiple Scattering of Light by Particles written by Michael I. Mishchenko and published by Cambridge University Press. This book was released on 2006-04-27 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph on multiple scattering of light by small particles is an ideal resource for science professionals, engineers, and graduate students.
Download or read book Electromagnetic Scattering by Particles and Particle Groups written by Michael I. Mishchenko and published by Cambridge University Press. This book was released on 2014-04-24 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, accessible introduction to the basic concepts, formalism and recent advances in electromagnetic scattering, for researchers and graduate students.
Download or read book Light Scattering by Particles in Water written by Miroslaw Jonasz and published by Elsevier. This book was released on 2011-08-29 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data on light scattering by particles in water, the authors employ simple models. The book concludes with extensive critical reviews of the experimental constraints of light scattering models: results of measurements of light scattering and of the key properties of the particles: size distribution, refractive index (composition), structure, and shape. These reviews guide the reader through literature scattered among more than 210 scientific journals and periodicals which represent a wide range of disciplines. A special emphasis is put on the methods of measuring both light scattering and the relevant properties of the particles, because principles of these methods may affect interpretation and applicability of the results. The book includes extensive guides to literature on light scattering data and instrumentation design, as well as on the data for size distributions, refractive indices, and shapes typical of particles in natural waters. It also features a comprehensive index, numerous cross-references, and a reference list with over 1370 entries. An errata sheet for this work can be found at: http://www.tpdsci.com/Ref/Jonasz_M_2007_LightScatE.php *Extensive reference section provides handy compilations of knowledge on the designs of light scattering meters, sources of experimental data, and more *Worked exercises and examples throughout
Download or read book Light Scattering by Ice Crystals written by Kuo-Nan Liou and published by Cambridge University Press. This book was released on 2016-10-06 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume outlines the fundamentals and applications of light scattering, absorption and polarization processes involving ice crystals.
- Author : Bingqiang Sun
- Publisher : Elsevier
- Release : 2019-10-18
- ISBN : 0128180919
- Pages : 274 pages
Invariant Imbedding T matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles
Download or read book Invariant Imbedding T matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles written by Bingqiang Sun and published by Elsevier. This book was released on 2019-10-18 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Invariant Imbedding T-matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles propels atmospheric research forward as a resource and a tool for understanding the T-Matrix method in relation to light scattering. The text explores concepts ranging from electromagnetic waves and scattering dyads to the fundamentals of the T-Matrix method. Providing recently developed material, this text is sufficient to aid the light scattering science community with current and leading information. Enriched with detailed research from top field experts, Invariant Imbedding T-matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles offers a meaningful and essential presentation of methods and applications, with a focus on the light scattering of small and intermediate particles that supports and builds upon the latest studies. Thus, it is a valuable resource for atmospheric researchers and other earth and environmental scientists to expand their knowledge and understanding of available tools. - Systematically introduces innovative methods with powerful numerical capabilities - Thoroughly presents the rudimentary principles of light scattering and the T-matrix method - Offers a condensed and well-ordered arrangement of text, figures and formulas that are serviceable for both students and researchers
Download or read book Light Scattering Reviews 3 written by Alexander A. Kokhanovsky and published by Springer Science & Business Media. This book was released on 2008-08-22 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the 3rd volume of a "Light Scattering Reviews" series devoted to current knowledge of light scattering problems and both experimental and theoretical research techniques related to their solution. This volume covers applications in remote sensing, inverse problems and geophysics, with a particular focus on terrestrial clouds. The influence of clouds on climate is poorly understood. The theoretical aspects of this problem constitute the main emphasis of this work.
Download or read book Polarimetric Detection Characterization and Remote Sensing written by Michael I. Mishchenko and published by Springer. This book was released on 2011-05-27 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the need for accurate and non-invasive optical characterization and diagnostic techniques is rapidly increasing, it is imperative to find improved ways of extracting the additional information contained within the measured parameters of the scattered light. This is the first specialized monograph on photopolarimetry, a rapidly developing, multidisciplinary topic with numerous military, ecological remote-sensing, astrophysical, biomedical, and technological applications. The main objective is to describe and discuss techniques developed in various disciplines to acquire useful information from the polarization signal of scattered electromagnetic waves. It focuses on the state-of-the-art in polarimetric detection, characterization, and remote sensing, including military and environmental monitoring as well as terrestrial, atmospheric, and biomedical characterization. The book identifies polarimetric techniques that have been especially successful for various applications as well as the future needs of the various research communities. The monograph is intended to facilitate cross-pollination of ideas and thereby improve research efficiency and help advance the field of polarimetry into the future. The book is thoroughly interdisciplinary and contains only invited review chapters written by leading experts in the respective fields. It will be useful to science professionals, engineers, and graduate students working in a broad range of disciplines: optics, electromagnetics, atmospheric radiation and remote sensing, radar meteorology, oceanography, climate research, astrophysics, optical engineering and technology, particle characterization, and biomedical optics.
Download or read book Springer Series in Light Scattering written by Alexander Kokhanovsky and published by Springer. This book was released on 2019-01-13 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a survey of modern theoretical techniques in studies of radiative transfer and light scattering phenomena in turbid media. It offers a comprehensive analysis of polarized radiative transfer, and also discusses advances in planetary spectroscopy as far as aerosol layer height determination is of interest. Further, it describes approximate methods of the radiative transfer equation solution for a special case of strongly scattering media. A separate chapter focuses on optical properties of Black Carbon aggregates.
Download or read book Atmospheric Aerosols written by Olivier Boucher and published by Springer. This book was released on 2015-05-18 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook aims to be a one stop shop for those interested in aerosols and their impact on the climate system. It starts with some fundamentals on atmospheric aerosols, atmospheric radiation and cloud physics, then goes into techniques used for in-situ and remote sensing measurements of aerosols, data assimilation, and discusses aerosol-radiation interactions, aerosol-cloud interactions and the multiple impacts of aerosols on the climate system. The book aims to engage those interested in aerosols and their impacts on the climate system: graduate and PhD students, but also post-doctorate fellows who are new to the field or would like to broaden their knowledge. The book includes exercises at the end of most chapters. Atmospheric aerosols are small (microscopic) particles in suspension in the atmosphere, which play multiple roles in the climate system. They interact with the energy budget through scattering and absorption of solar and terrestrial radiation. They also serve as cloud condensation and ice nuclei with impacts on the formation, evolution and properties of clouds. Finally aerosols also interact with some biogeochemical cycles. Anthropogenic emissions of aerosols are responsible for a cooling effect that has masked part of the warming due to the increased greenhouse effect since pre-industrial time. Natural aerosols also respond to climate changes as shown by observations of past climates and modelling of the future climate.
Download or read book Light Scattering by Optically Soft Particles written by Subodh K. Sharma and published by Springer Science & Business Media. This book was released on 2006-08-29 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with a particular class of approximation methods in the context of light scattering by small particles. Soft particles occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications. This class of approximations has been termed as eikonal or soft particle approximations. The study of these approximations is very important because soft particles occur abundantly in nature.
Download or read book Radiative Processes in Astrophysics written by George B. Rybicki and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.
Download or read book Principles of Scattering and Transport of Light written by Rémi Carminati and published by Cambridge University Press. This book was released on 2021-07-29 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic and accessible treatment of light scattering and transport in disordered media from first principles.
Download or read book Optics of Biological Particles written by Alfons Hoekstra and published by Springer Science & Business Media. This book was released on 2007-04-17 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells.
Download or read book Light Plasmonics and Particles written by M. Pinar Menguc and published by Elsevier. This book was released on 2023-05-08 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: Light, Plasmonics and Particles focuses on the fundamental science and engineering applications of light scattering by particles, aerosols and hydrosols, and of localized plasmonics. The book is intended to be a self-contained and coherent resource volume for graduate students and professionals in the disciplines of materials science, engineering and related disciplines of physics and chemistry. In addition to chapters related to fundamental concepts, it includes detailed discussion of different numerical models, experimental systems and applications. In order to develop new devices, processes and applications, we need to advance our understanding of light-matter interactions. For this purpose, we need to have a firm grasp of electromagnetic wave phenomena, and absorption and scattering of waves by different size and shape geometrical objects. In addition, understanding of tunneling of waves based on electron and lattice vibrations and coupling with the thermal fluctuations to enhance near-field energy transfer mechanisms are required for the development of future energy harvesting devices and sensors. - Reviews the fundamental science, available computational tools, experimental systems, and a wide range of applications of plasmonics - Connects the cross-cutting science of the physics of electromagnetic light scattering by particles, plasmonics and phononic interactions at the electronic, molecular and lattice levels of materials - Reviews applications of light-matter interactions of particles, aerosols, hydrosols and localized plasmonics
Download or read book Light Scattering Reviews 5 written by Alexander A. Kokhanovsky and published by Springer Science & Business Media. This book was released on 2010-08-05 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Light scattering by densely packed inhomogeneous media is a particularly ch- lenging optics problem. In most cases, only approximate methods are used for the calculations. However, in the case where only a small number of macroscopic sc- tering particles are in contact (clusters or aggregates) it is possible to obtain exact results solving Maxwell’s equations. Simulations are possible, however, only for a relativelysmallnumberofparticles,especiallyiftheirsizesarelargerthanthewa- length of incident light. The ?rst review chapter in PartI of this volume, prepared by Yasuhiko Okada, presents modern numerical techniques used for the simulation of optical characteristics of densely packed groups of spherical particles. In this case, Mie theory cannot provide accurate results because particles are located in the near ?eld of each other and strongly interact. As a matter of fact, Maxwell’s equations must be solved not for each particle separately but for the ensemble as a whole in this case. The author describes techniques for the generation of shapes of aggregates. The orientation averaging is performed by a numerical integration with respect to Euler angles. The numerical aspects of various techniques such as the T-matrix method, discrete dipole approximation, the ?nite di?erence time domain method, e?ective medium theory, and generalized multi-particle Mie so- tion are presented. Recent advances in numerical techniques such as the grouping and adding method and also numerical orientation averaging using a Monte Carlo method are discussed in great depth.