EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book

    Book Details:
  • Author :
  • Publisher : IOS Press
  • Release :
  • ISBN :
  • Pages : 4947 pages

Download or read book written by and published by IOS Press. This book was released on with total page 4947 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Graphical Models  Exponential Families  and Variational Inference

Download or read book Graphical Models Exponential Families and Variational Inference written by Martin J. Wainwright and published by Now Publishers Inc. This book was released on 2008 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.

Book An Introduction to Conditional Random Fields

Download or read book An Introduction to Conditional Random Fields written by Charles Sutton and published by Now Pub. This book was released on 2012 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.

Book Machine Learning

    Book Details:
  • Author : Maria Johnsen
  • Publisher : Maria Johnsen
  • Release : 2024-07-06
  • ISBN :
  • Pages : 550 pages

Download or read book Machine Learning written by Maria Johnsen and published by Maria Johnsen. This book was released on 2024-07-06 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning has revolutionized industries, from healthcare to entertainment, by enhancing how we understand and interact with data. Despite its prevalence, mastering this field requires both theoretical knowledge and practical skills. This book bridges that gap, starting with foundational concepts and essential mathematics, then advancing through a wide range of algorithms and techniques. It covers supervised and unsupervised learning, neural networks, deep learning, and reinforcement learning, with clear explanations and practical examples. Real-world applications are highlighted through scenarios and case studies, demonstrating how to solve specific problems with machine learning. You'll find hands-on guides to popular tools and libraries like Python, Scikit-Learn, TensorFlow, Keras, and PyTorch, enabling you to build, evaluate, and deploy models effectively. The book explores cutting-edge topics like quantum machine learning and explainable AI, keeping you updated on the latest trends. Detailed case studies and capstone projects provide practical experience, guiding you through the entire machine learning process. This book, a labor of love born from extensive research and passion, aims to make machine learning accessible and engaging. Machine learning is about curiosity, creativity, and the pursuit of knowledge. Explore, experiment, and enjoy the journey. Thank you for choosing this book. I am excited to be part of your machine learning adventure and look forward to the incredible things you will achieve.

Book Bayesian Networks

    Book Details:
  • Author : Marco Scutari
  • Publisher : CRC Press
  • Release : 2021-07-28
  • ISBN : 1000410382
  • Pages : 275 pages

Download or read book Bayesian Networks written by Marco Scutari and published by CRC Press. This book was released on 2021-07-28 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R

Book Artificial General Intelligence  2008

Download or read book Artificial General Intelligence 2008 written by Pei Wang and published by IOS Press. This book was released on 2008 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes full-length papers, short position statements and also the papers presented in the post conference workshop on the sociocultural, ethical and futurological implications of Artificial General Intelligence (AGI).

Book Factor Graphs for Robot Perception

Download or read book Factor Graphs for Robot Perception written by Frank Dellaert and published by . This book was released on 2017-08-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the use of factor graphs for the modeling and solving of large-scale inference problems in robotics. Factor graphs are introduced as an economical representation within which to formulate the different inference problems, setting the stage for the subsequent sections on practical methods to solve them.

Book Advanced Lectures on Machine Learning

Download or read book Advanced Lectures on Machine Learning written by Olivier Bousquet and published by Springer. This book was released on 2011-03-22 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

Book Machine Learning

    Book Details:
  • Author : Kevin P. Murphy
  • Publisher : MIT Press
  • Release : 2012-09-07
  • ISBN : 0262304325
  • Pages : 1102 pages

Download or read book Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2012-09-07 with total page 1102 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Book Learning in Graphical Models

Download or read book Learning in Graphical Models written by M.I. Jordan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.

Book Probabilistic Graphical Models

Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Book Structured Learning and Prediction in Computer Vision

Download or read book Structured Learning and Prediction in Computer Vision written by Sebastian Nowozin and published by Now Publishers Inc. This book was released on 2011 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structured Learning and Prediction in Computer Vision introduces the reader to the most popular classes of structured models in computer vision.

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Information Theory  Inference and Learning Algorithms

Download or read book Information Theory Inference and Learning Algorithms written by David J. C. MacKay and published by Cambridge University Press. This book was released on 2003-09-25 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Book Proceedings of the Twenty third AAAI Conference on Artificial Intelligence and the Twentieth Innovative Applications of Artificial Intelligence Conference

Download or read book Proceedings of the Twenty third AAAI Conference on Artificial Intelligence and the Twentieth Innovative Applications of Artificial Intelligence Conference written by American Association for Artificial Intelligence and published by . This book was released on 2008 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Exploring Artificial Intelligence in the New Millennium

Download or read book Exploring Artificial Intelligence in the New Millennium written by Gerhard Lakemeyer and published by Morgan Kaufmann. This book was released on 2003 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide is a unique presentation of the spectrum of ongoing research in Artificial Intelligence. An ideal collection for personal reference or for use in introductory courses in AI and its subfields, "Exploring Artificial Intelligence in the New Millennium" is essential reading for anyone interested in the intellectual and technological challenges of AI.

Book Statistical Inference as Severe Testing

Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.