Download or read book Scaling Big Data with Hadoop and Solr Second Edition written by Hrishikesh Vijay Karambelkar and published by Packt Publishing Ltd. This book was released on 2015-04-27 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is aimed at developers, designers, and architects who would like to build big data enterprise search solutions for their customers or organizations. No prior knowledge of Apache Hadoop and Apache Solr/Lucene technologies is required.
Download or read book Data Lake Development with Big Data written by Pradeep Pasupuleti and published by Packt Publishing Ltd. This book was released on 2015-11-26 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore architectural approaches to building Data Lakes that ingest, index, manage, and analyze massive amounts of data using Big Data technologies About This Book Comprehend the intricacies of architecting a Data Lake and build a data strategy around your current data architecture Efficiently manage vast amounts of data and deliver it to multiple applications and systems with a high degree of performance and scalability Packed with industry best practices and use-case scenarios to get you up-and-running Who This Book Is For This book is for architects and senior managers who are responsible for building a strategy around their current data architecture, helping them identify the need for a Data Lake implementation in an enterprise context. The reader will need a good knowledge of master data management and information lifecycle management, and experience of Big Data technologies. What You Will Learn Identify the need for a Data Lake in your enterprise context and learn to architect a Data Lake Learn to build various tiers of a Data Lake, such as data intake, management, consumption, and governance, with a focus on practical implementation scenarios Find out the key considerations to be taken into account while building each tier of the Data Lake Understand Hadoop-oriented data transfer mechanism to ingest data in batch, micro-batch, and real-time modes Explore various data integration needs and learn how to perform data enrichment and data transformations using Big Data technologies Enable data discovery on the Data Lake to allow users to discover the data Discover how data is packaged and provisioned for consumption Comprehend the importance of including data governance disciplines while building a Data Lake In Detail A Data Lake is a highly scalable platform for storing huge volumes of multistructured data from disparate sources with centralized data management services. This book explores the potential of Data Lakes and explores architectural approaches to building data lakes that ingest, index, manage, and analyze massive amounts of data using batch and real-time processing frameworks. It guides you on how to go about building a Data Lake that is managed by Hadoop and accessed as required by other Big Data applications. This book will guide readers (using best practices) in developing Data Lake's capabilities. It will focus on architect data governance, security, data quality, data lineage tracking, metadata management, and semantic data tagging. By the end of this book, you will have a good understanding of building a Data Lake for Big Data. Style and approach Data Lake Development with Big Data provides architectural approaches to building a Data Lake. It follows a use case-based approach where practical implementation scenarios of each key component are explained. It also helps you understand how these use cases are implemented in a Data Lake. The chapters are organized in a way that mimics the sequential data flow evidenced in a Data Lake.
Download or read book Handbook of Research on Big Data Storage and Visualization Techniques written by Segall, Richard S. and published by IGI Global. This book was released on 2018-01-05 with total page 1078 pages. Available in PDF, EPUB and Kindle. Book excerpt: The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. The Handbook of Research on Big Data Storage and Visualization Techniques is a critical scholarly resource that explores big data analytics and technologies and their role in developing a broad understanding of issues pertaining to the use of big data in multidisciplinary fields. Featuring coverage on a broad range of topics, such as architecture patterns, programing systems, and computational energy, this publication is geared towards professionals, researchers, and students seeking current research and application topics on the subject.
Download or read book Scaling Apache Solr written by Hrishikesh Vijay Karambelkar and published by Packt Publishing Ltd. This book was released on 2014-07-25 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a step-by-step guide for readers who would like to learn how to build complete enterprise search solutions, with ample real-world examples and case studies. If you are a developer, designer, or architect who would like to build enterprise search solutions for your customers or organization, but have no prior knowledge of Apache Solr/Lucene technologies, this is the book for you.
Download or read book Pro Hadoop Data Analytics written by Kerry Koitzsch and published by Apress. This book was released on 2016-12-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn advanced analytical techniques and leverage existing tool kits to make your analytic applications more powerful, precise, and efficient. This book provides the right combination of architecture, design, and implementation information to create analytical systems that go beyond the basics of classification, clustering, and recommendation. Pro Hadoop Data Analytics emphasizes best practices to ensure coherent, efficient development. A complete example system will be developed using standard third-party components that consist of the tool kits, libraries, visualization and reporting code, as well as support glue to provide a working and extensible end-to-end system. The book also highlights the importance of end-to-end, flexible, configurable, high-performance data pipeline systems with analytical components as well as appropriate visualization results. You'll discover the importance of mix-and-match or hybrid systems, using different analytical components in one application. This hybrid approach will be prominent in the examples. What You'll Learn Build big data analytic systems with the Hadoop ecosystem Use libraries, tool kits, and algorithms to make development easier and more effective Apply metrics to measure performance and efficiency of components and systems Connect to standard relational databases, noSQL data sources, and more Follow case studies with example components to create your own systems Who This Book Is For Software engineers, architects, and data scientists with an interest in the design and implementation of big data analytical systems using Hadoop, the Hadoop ecosystem, and other associated technologies.
Download or read book Solr in Action written by Timothy Potter and published by Simon and Schuster. This book was released on 2014-03-25 with total page 939 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Solr in Action is a comprehensive guide to implementing scalable search using Apache Solr. This clearly written book walks you through well-documented examples ranging from basic keyword searching to scaling a system for billions of documents and queries. It will give you a deep understanding of how to implement core Solr capabilities. About the Book Whether you're handling big (or small) data, managing documents, or building a website, it is important to be able to quickly search through your content and discover meaning in it. Apache Solr is your tool: a ready-to-deploy, Lucene-based, open source, full-text search engine. Solr can scale across many servers to enable real-time queries and data analytics across billions of documents. Solr in Action teaches you to implement scalable search using Apache Solr. This easy-to-read guide balances conceptual discussions with practical examples to show you how to implement all of Solr's core capabilities. You'll master topics like text analysis, faceted search, hit highlighting, result grouping, query suggestions, multilingual search, advanced geospatial and data operations, and relevancy tuning. This book assumes basic knowledge of Java and standard database technology. No prior knowledge of Solr or Lucene is required. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. What's Inside How to scale Solr for big data Rich real-world examples Solr as a NoSQL data store Advanced multilingual, data, and relevancy tricks Coverage of versions through Solr 4.7 About the Authors Trey Grainger is a director of engineering at CareerBuilder. Timothy Potter is a senior member of the engineering team at LucidWorks. The authors work on the scalability and reliability of Solr, as well as on recommendation engine and big data analytics technologies. Table of Contents PART 1 MEET SOLR Introduction to Solr Getting to know Solr Key Solr concepts Configuring Solr Indexing Text analysis PART 2 CORE SOLR CAPABILITIES Performing queries and handling results Faceted search Hit highlighting Query suggestions Result grouping/field collapsing Taking Solr to production PART 3 TAKING SOLR TO THE NEXT LEVEL SolrCloud Multilingual search Complex query operations Mastering relevancy
Download or read book Scaling Big Data with Hadoop and Solr Second Edition written by Hrishikesh Vijay Karambelkar and published by Packt Publishing. This book was released on 2015-04-30 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Architecting Modern Data Platforms written by Jan Kunigk and published by "O'Reilly Media, Inc.". This book was released on 2018-12-05 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability
Download or read book A Brief Guide To Big Data Hadoop written by Ambrish Kumar Sharma and published by AG PUBLISHING HOUSE (AGPH Books). This book was released on 2022-10-11 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delivers various components that make up the Apache Hadoop ecosystem, as well as some general information about the Big Data platform's underlying architectural principles. Use a wide variety of software, including Apache Spark, Elasticsearch, Tableau, and more, to solve a wide range of problems associated with data processing and analytics. Become an experienced Hadoop Architect with the help of this detailed, how-to manual. If you're a data professional looking to further your career in the Hadoop sector and become a Big Data architect, this book is for you. If you're a project manager or mainframe expert interested in making the transition to the Big Data Hadoop industry, you'll discover valuable information in this book.
Download or read book Apache Solr Search Patterns written by Jayant Kumar and published by Packt Publishing Ltd. This book was released on 2015-04-24 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for developers who already know how to use Solr and are looking at procuring advanced strategies for improving their search using Solr. This book is also for people who work with analytics to generate graphs and reports using Solr. Moreover, if you are a search architect who is looking forward to scale your search using Solr, this is a must have book for you. It would be helpful if you are familiar with the Java programming language.
Download or read book Numerical Computing with Python written by Pratap Dangeti and published by Packt Publishing Ltd. This book was released on 2018-12-21 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand, explore, and effectively present data using the powerful data visualization techniques of Python Key FeaturesUse the power of Pandas and Matplotlib to easily solve data mining issuesUnderstand the basics of statistics to build powerful predictive data modelsGrasp data mining concepts with helpful use-cases and examplesBook Description Data mining, or parsing the data to extract useful insights, is a niche skill that can transform your career as a data scientist Python is a flexible programming language that is equipped with a strong suite of libraries and toolkits, and gives you the perfect platform to sift through your data and mine the insights you seek. This Learning Path is designed to familiarize you with the Python libraries and the underlying statistics that you need to get comfortable with data mining. You will learn how to use Pandas, Python's popular library to analyze different kinds of data, and leverage the power of Matplotlib to generate appealing and impressive visualizations for the insights you have derived. You will also explore different machine learning techniques and statistics that enable you to build powerful predictive models. By the end of this Learning Path, you will have the perfect foundation to take your data mining skills to the next level and set yourself on the path to become a sought-after data science professional. This Learning Path includes content from the following Packt products: Statistics for Machine Learning by Pratap DangetiMatplotlib 2.x By Example by Allen Yu, Claire Chung, Aldrin YimPandas Cookbook by Theodore PetrouWhat you will learnUnderstand the statistical fundamentals to build data modelsSplit data into independent groups Apply aggregations and transformations to each groupCreate impressive data visualizationsPrepare your data and design models Clean up data to ease data analysis and visualizationCreate insightful visualizations with Matplotlib and SeabornCustomize the model to suit your own predictive goalsWho this book is for If you want to learn how to use the many libraries of Python to extract impactful information from your data and present it as engaging visuals, then this is the ideal Learning Path for you. Some basic knowledge of Python is enough to get started with this Learning Path.
Download or read book Pandas Cookbook written by Theodore Petrou and published by Packt Publishing Ltd. This book was released on 2017-10-23 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 95 hands-on recipes to leverage the power of pandas for efficient scientific computation and data analysis About This Book Use the power of pandas to solve most complex scientific computing problems with ease Leverage fast, robust data structures in pandas to gain useful insights from your data Practical, easy to implement recipes for quick solutions to common problems in data using pandas Who This Book Is For This book is for data scientists, analysts and Python developers who wish to explore data analysis and scientific computing in a practical, hands-on manner. The recipes included in this book are suitable for both novice and advanced users, and contain helpful tips, tricks and caveats wherever necessary. Some understanding of pandas will be helpful, but not mandatory. What You Will Learn Master the fundamentals of pandas to quickly begin exploring any dataset Isolate any subset of data by properly selecting and querying the data Split data into independent groups before applying aggregations and transformations to each group Restructure data into tidy form to make data analysis and visualization easier Prepare real-world messy datasets for machine learning Combine and merge data from different sources through pandas SQL-like operations Utilize pandas unparalleled time series functionality Create beautiful and insightful visualizations through pandas direct hooks to Matplotlib and Seaborn In Detail This book will provide you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way. The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands like one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through practical situations that you are highly likely to encounter. Many advanced recipes combine several different features across the pandas library to generate results. Style and approach The author relies on his vast experience teaching pandas in a professional setting to deliver very detailed explanations for each line of code in all of the recipes. All code and dataset explanations exist in Jupyter Notebooks, an excellent interface for exploring data.
Download or read book Apache Hadoop 3 Quick Start Guide written by Hrishikesh Vijay Karambelkar and published by Packt Publishing Ltd. This book was released on 2018-10-31 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fast paced guide that will help you learn about Apache Hadoop 3 and its ecosystem Key FeaturesSet up, configure and get started with Hadoop to get useful insights from large data setsWork with the different components of Hadoop such as MapReduce, HDFS and YARN Learn about the new features introduced in Hadoop 3Book Description Apache Hadoop is a widely used distributed data platform. It enables large datasets to be efficiently processed instead of using one large computer to store and process the data. This book will get you started with the Hadoop ecosystem, and introduce you to the main technical topics, including MapReduce, YARN, and HDFS. The book begins with an overview of big data and Apache Hadoop. Then, you will set up a pseudo Hadoop development environment and a multi-node enterprise Hadoop cluster. You will see how the parallel programming paradigm, such as MapReduce, can solve many complex data processing problems. The book also covers the important aspects of the big data software development lifecycle, including quality assurance and control, performance, administration, and monitoring. You will then learn about the Hadoop ecosystem, and tools such as Kafka, Sqoop, Flume, Pig, Hive, and HBase. Finally, you will look at advanced topics, including real time streaming using Apache Storm, and data analytics using Apache Spark. By the end of the book, you will be well versed with different configurations of the Hadoop 3 cluster. What you will learnStore and analyze data at scale using HDFS, MapReduce and YARNInstall and configure Hadoop 3 in different modesUse Yarn effectively to run different applications on Hadoop based platformUnderstand and monitor how Hadoop cluster is managedConsume streaming data using Storm, and then analyze it using SparkExplore Apache Hadoop ecosystem components, such as Flume, Sqoop, HBase, Hive, and KafkaWho this book is for Aspiring Big Data professionals who want to learn the essentials of Hadoop 3 will find this book to be useful. Existing Hadoop users who want to get up to speed with the new features introduced in Hadoop 3 will also benefit from this book. Having knowledge of Java programming will be an added advantage.
Download or read book Encyclopedia of Computer Science and Technology written by Phillip A. Laplante and published by CRC Press. This book was released on 2017-10-02 with total page 1013 pages. Available in PDF, EPUB and Kindle. Book excerpt: With breadth and depth of coverage, the Encyclopedia of Computer Science and Technology, Second Edition has a multi-disciplinary scope, drawing together comprehensive coverage of the inter-related aspects of computer science and technology. The topics covered in this encyclopedia include: General and reference Hardware Computer systems organization Networks Software and its engineering Theory of computation Mathematics of computing Information systems Security and privacy Human-centered computing Computing methodologies Applied computing Professional issues Leading figures in the history of computer science The encyclopedia is structured according to the ACM Computing Classification System (CCS), first published in 1988 but subsequently revised in 2012. This classification system is the most comprehensive and is considered the de facto ontological framework for the computing field. The encyclopedia brings together the information and historical context that students, practicing professionals, researchers, and academicians need to have a strong and solid foundation in all aspects of computer science and technology.
Download or read book Big Data Computing written by Rajendra Akerkar and published by CRC Press. This book was released on 2013-12-05 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to market forces and technological evolution, Big Data computing is developing at an increasing rate. A wide variety of novel approaches and tools have emerged to tackle the challenges of Big Data, creating both more opportunities and more challenges for students and professionals in the field of data computation and analysis. Presenting a mix of industry cases and theory, Big Data Computing discusses the technical and practical issues related to Big Data in intelligent information management. Emphasizing the adoption and diffusion of Big Data tools and technologies in industry, the book introduces a broad range of Big Data concepts, tools, and techniques. It covers a wide range of research, and provides comparisons between state-of-the-art approaches. Comprised of five sections, the book focuses on: What Big Data is and why it is important Semantic technologies Tools and methods Business and economic perspectives Big Data applications across industries
Download or read book Big Data Made Easy written by Michael Frampton and published by Apress. This book was released on 2014-12-31 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many corporations are finding that the size of their data sets are outgrowing the capability of their systems to store and process them. The data is becoming too big to manage and use with traditional tools. The solution: implementing a big data system. As Big Data Made Easy: A Working Guide to the Complete Hadoop Toolset shows, Apache Hadoop offers a scalable, fault-tolerant system for storing and processing data in parallel. It has a very rich toolset that allows for storage (Hadoop), configuration (YARN and ZooKeeper), collection (Nutch and Solr), processing (Storm, Pig, and Map Reduce), scheduling (Oozie), moving (Sqoop and Avro), monitoring (Chukwa, Ambari, and Hue), testing (Big Top), and analysis (Hive). The problem is that the Internet offers IT pros wading into big data many versions of the truth and some outright falsehoods born of ignorance. What is needed is a book just like this one: a wide-ranging but easily understood set of instructions to explain where to get Hadoop tools, what they can do, how to install them, how to configure them, how to integrate them, and how to use them successfully. And you need an expert who has worked in this area for a decade—someone just like author and big data expert Mike Frampton. Big Data Made Easy approaches the problem of managing massive data sets from a systems perspective, and it explains the roles for each project (like architect and tester, for example) and shows how the Hadoop toolset can be used at each system stage. It explains, in an easily understood manner and through numerous examples, how to use each tool. The book also explains the sliding scale of tools available depending upon data size and when and how to use them. Big Data Made Easy shows developers and architects, as well as testers and project managers, how to: Store big data Configure big data Process big data Schedule processes Move data among SQL and NoSQL systems Monitor data Perform big data analytics Report on big data processes and projects Test big data systems Big Data Made Easy also explains the best part, which is that this toolset is free. Anyone can download it and—with the help of this book—start to use it within a day. With the skills this book will teach you under your belt, you will add value to your company or client immediately, not to mention your career.
Download or read book Handbook of IoT and Big Data written by Vijender Kumar Solanki and published by CRC Press. This book was released on 2019-02-21 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-contributed handbook focuses on the latest workings of IoT (internet of Things) and Big Data. As the resources are limited, it's the endeavor of the authors to support and bring the information into one resource. The book is divided into 4 sections that covers IoT and technologies, the future of Big Data, algorithms, and case studies showing IoT and Big Data in various fields such as health care, manufacturing and automation. Features Focuses on the latest workings of IoT and Big Data Discusses the emerging role of technologies and the fast-growing market of Big Data Covers the movement toward automation with hardware, software, and sensors, and trying to save on energy resources Offers the latest technology on IoT Presents the future horizons on Big Data