EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sampling based Motion Planning Algorithms for Dynamical Systems

Download or read book Sampling based Motion Planning Algorithms for Dynamical Systems written by and published by . This book was released on 2015 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical systems bring further challenges to the problem of motion planning, by additionally complicating the computation of collision-free paths with collision-free dynamic motions. This dissertation proposes efficient approaches for the optimal sampling-based motion planning algorithms, with a strong emphasis on the accommodation of realistic dynamical systems as the subject of motion planning. The main contribution of the dissertation is twofold: advances in general framework for asymptotically-optimal sampling-based algorithms, and the development of fast algorithmic components for certain classes of dynamical systems. The first part of the dissertation begins with key ideas from a number of recent sampling-based algorithms toward fast convergence rates. We reinterpret the ideas in the context of incremental algorithms, and integrate the key ingredients within the strict [omicron](log n) complexity per iteration, which we refer to as the enhanced RRT* algorithm. Subsequently, Goal-Rooted Feedback Motion Trees (GR-FMTs) are presented as an adaptation of sampling-based algorithms into the context of asymptotically-optimal feedback motion planning or replanning. Last but not least, we propose a loop of collective operations, or an efficient loop with cost-informed operations, which minimizes the exposure to the main challenges incurred by dynamical systems, i.e., steering problems or Two-Point Boundary Value Problems (TPBVPs). The second main part of the dissertation directly deals with the steering problems for three categories of dynamical systems. First, we propose a numerical TPBVP method for a general class of dynamical systems, including time-optimal off-road vehicle maneuvers as the main example. Second, we propose a semi-analytic TPBVP approach for differentially flat systems or partially flat systems, by which the computation of vehicle maneuvers is expedited and the capability to handle extreme scenarios is greatly enhanced. Third, we propose an efficient TPBVP algorithm for controllable linear systems, based on the computation of small-sized linear or quadratic programming problems in a progressive and incremental manner. Overall, the main contribution in this dissertation realizes the outcome of anytime algorithms for optimal motion planning problems. An initial solution is obtained within a small time, and the solution is further improved toward the optimal one. To our best knowledge from both simulation results and algorithm analyses, the proposed algorithms supposedly outperform or run at least as fast as other state-of-the-art sampling-based algorithms.

Book Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments

Download or read book Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments written by Kristoffer Bergman and published by Linköping University Electronic Press. This book was released on 2021-03-16 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, motion planning for autonomous systems has become an important area of research. The high interest is not the least due to the development of systems such as self-driving cars, unmanned aerial vehicles and robotic manipulators. The objective in optimal motion planning problems is to find feasible motion plans that also optimize a performance measure. From a control perspective, the problem is an instance of an optimal control problem. This thesis addresses optimal motion planning problems for complex dynamical systems that operate in unstructured environments, where no prior reference such as road-lane information is available. Some example scenarios are autonomous docking of vessels in harbors and autonomous parking of self-driving tractor-trailer vehicles at loading sites. The focus is to develop optimal motion planning algorithms that can reliably be applied to these types of problems. This is achieved by combining recent ideas from automatic control, numerical optimization and robotics. The first contribution is a systematic approach for computing local solutions to motion planning problems in challenging unstructured environments. The solutions are computed by combining homotopy methods and direct optimal control techniques. The general principle is to define a homotopy that transforms, or preferably relaxes, the original problem to an easily solved problem. The approach is demonstrated in motion planning problems in 2D and 3D environments, where the presented method outperforms a state-of-the-art asymptotically optimal motion planner based on random sampling. The second contribution is an optimization-based framework for automatic generation of motion primitives for lattice-based motion planners. Given a family of systems, the user only needs to specify which principle types of motions that are relevant for the considered system family. Based on the selected principle motions and a selected system instance, the framework computes a library of motion primitives by simultaneously optimizing the motions and the terminal states. The final contribution of this thesis is a motion planning framework that combines the strengths of sampling-based planners with direct optimal control in a novel way. The sampling-based planner is applied to the problem in a first step using a discretized search space, where the system dynamics and objective function are chosen to coincide with those used in a second step based on optimal control. This combination ensures that the sampling-based motion planner provides a feasible motion plan which is highly suitable as warm-start to the optimal control step. Furthermore, the second step is modified such that it also can be applied in a receding-horizon fashion, where the proposed combination of methods is used to provide theoretical guarantees in terms of recursive feasibility, worst-case objective function value and convergence to the terminal state. The proposed motion planning framework is successfully applied to several problems in challenging unstructured environments for tractor-trailer vehicles. The framework is also applied and tailored for maritime navigation for vessels in archipelagos and harbors, where it is able to compute energy-efficient trajectories which complies with the international regulations for preventing collisions at sea.

Book Planning Algorithms

    Book Details:
  • Author : Steven M. LaValle
  • Publisher : Cambridge University Press
  • Release : 2006-05-29
  • ISBN : 9780521862059
  • Pages : 844 pages

Download or read book Planning Algorithms written by Steven M. LaValle and published by Cambridge University Press. This book was released on 2006-05-29 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.

Book A Survey on the Integration of Machine Learning with Sampling based Motion Planning  Introduction 2  Sampling based Motion Planning 3  Learning Primitives of Sampling based Motion Planning 4  Learning based Pipelines 5  SBMP with Learned Models 6  Discussion References

Download or read book A Survey on the Integration of Machine Learning with Sampling based Motion Planning Introduction 2 Sampling based Motion Planning 3 Learning Primitives of Sampling based Motion Planning 4 Learning based Pipelines 5 SBMP with Learned Models 6 Discussion References written by Troy McMahon and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Motion planning is the problem of finding valid paths, expressed as sequences of configurations, or trajectories, expressed as sequences of controls, which move a robot from a given start state to a desired goal state while avoiding obstacles. Sampling-based methods are widely adopted solutions for robot motion planning. The methods are straightforward to implement, and effective in practice for many robotic systems. Furthermore, they have numerous desirable properties, such as probabilistic completeness and asymptotic optimality. Nevertheless, sampling-based methods still face challenges as the complexity of the underlying planning problem increases, especially under tight computation time constraints, which impact the quality of returned solutions or given inaccurate models. This has motivated machine learning to improve the computational efficiency and applicability of Sampling-Based Motion Planners (SBMPs).There are numerous publications on the use of machine learning algorithms to improve the efficiency of robotic systems in general. Recently, attention has focussed on the progress of deep learning methods, which has resulted in many efforts to utilize the corresponding tools in robotics. This monograph focuses specifically on integrating machine learning tools to improve the efficiency, convergence, and applicability of SBMPs. The publication covers a wide range of robotic applications, including, but not limited to, manipulation planning, and planning for systems with dynamic constraints. In particular, this manuscript first reviews the attempts to use machine learning to improve the performance of individual primitives used by SBMPs. It also studies a series of planners that use machine learning to adaptively select from a set of motion planning primitives. The monograph then proceeds to study a series of integrated architectures that learn an end-to-end mapping of sensor inputs to robot trajectories or controls. Finally, the monograph shows how SBMPs can operate over learned models of robotic system due to the presence of noise and uncertainty, and it concludes with a comparative discussion of the different approaches covered in terms of their impact on computational efficiency of the planner, quality of the computed paths as well as the usability of SBMPs. Also outlined are the broad difficulties and limitations of these methods, as well as potential directions of future work.

Book Real Time Collision Detection

Download or read book Real Time Collision Detection written by Christer Ericson and published by CRC Press. This book was released on 2004-12-22 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by an expert in the game industry, Christer Ericson's new book is a comprehensive guide to the components of efficient real-time collision detection systems. The book provides the tools and know-how needed to implement industrial-strength collision detection for the highly detailed dynamic environments of applications such as 3D games, virt

Book Motion planning and feedback control techniques with applications to long tractor trailer vehicles

Download or read book Motion planning and feedback control techniques with applications to long tractor trailer vehicles written by Oskar Ljungqvist and published by Linköping University Electronic Press. This book was released on 2020-04-20 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, improved sensor and hardware technologies as well as new methods and algorithms have made self-driving vehicles a realistic possibility in the near future. At the same time, there has been a growing demand within the transportation sector to increase efficiency and to reduce the environmental impact related to transportation of people and goods. Therefore, many leading automotive and technology companies have turned their attention towards developing advanced driver assistance systems and self-driving vehicles. Autonomous vehicles are expected to have their first big impact in closed environments, such as mines, harbors, loading and offloading sites. In such areas, the legal requirements are less restrictive and the surrounding environment is more controlled and predictable compared to urban areas. Expected positive outcomes include increased productivity and safety, reduced emissions and the possibility to relieve the human from performing complex or dangerous tasks. Within these sites, tractor-trailer vehicles are frequently used for transportation. These vehicles are composed of several interconnected vehicle segments, and are therefore large, complex and unstable while reversing. This thesis addresses the problem of designing efficient motion planning and feedback control techniques for such systems. The contributions of this thesis are within the area of motion planning and feedback control for long tractor-trailer combinations operating at low-speeds in closed and unstructured environments. It includes development of motion planning and feedback control frameworks, structured design tools for guaranteeing closed-loop stability and experimental validation of the proposed solutions through simulations, lab and field experiments. Even though the primary application in this work is tractor-trailer vehicles, many of the proposed approaches can with some adjustments also be used for other systems, such as drones and ships. The developed sampling-based motion planning algorithms are based upon the probabilistic closed-loop rapidly exploring random tree (CL-RRT) algorithm and the deterministic lattice-based motion planning algorithm. It is also proposed to use numerical optimal control offline for precomputing libraries of optimized maneuvers as well as during online planning in the form of a warm-started optimization step. To follow the motion plan, several predictive path-following control approaches are proposed with different computational complexity and performance. Common for these approaches are that they use a path-following error model of the vehicle for future predictions and are tailored to operate in series with a motion planner that computes feasible paths. The design strategies for the path-following approaches include linear quadratic (LQ) control and several advanced model predictive control (MPC) techniques to account for physical and sensing limitations. To strengthen the practical value of the developed techniques, several of the proposed approaches have been implemented and successfully demonstrated in field experiments on a full-scale test platform. To estimate the vehicle states needed for control, a novel nonlinear observer is evaluated on the full-scale test vehicle. It is designed to only utilize information from sensors that are mounted on the tractor, making the system independent of any sensor mounted on the trailer. Under de senaste årtiondena har utvecklingen av sensor- och hårdvaruteknik gått i en snabb takt, samtidigt som nya metoder och algoritmer har introducerats. Samtidigt ställs det stora krav på transportsektorn att öka effektiviteten och minska miljöpåverkan vid transporter av både människor och varor. Som en följd av detta har många ledande fordonstillverkare och teknikföretag börjat satsat på att utveckla avancerade förarstödsystem och självkörande fordon. Även forskningen inom autonoma fordon har under de senaste årtiondena kraftig ökat då en rad tekniska problem återstår att lösas. Förarlösa fordon förväntas få sitt första stora genombrott i slutna miljöer, såsom gruvor, hamnar, lastnings- och lossningsplatser. I sådana områden är lagstiftningen mindre hård jämfört med stadsområden och omgivningen är mer kontrollerad och förutsägbar. Några av de förväntade positiva effekterna är ökad produktivitet och säkerhet, minskade utsläpp och möjligheten att avlasta människor från att utföra svåra eller farliga uppgifter. Inom dessa platser används ofta lastbilar med olika släpvagnskombinationer för att transportera material. En sådan fordonskombination är uppbyggd av flera ihopkopplade moduler och är således utmanande att backa då systemet är instabilt. Detta gör det svårt att utforma ramverk för att styra sådana system vid exempelvis autonom backning. Självkörande fordon är mycket komplexa system som består av en rad olika komponenter vilka är designade för att lösa separata delproblem. Två viktiga komponenter i ett självkörande fordon är dels rörelseplaneraren som har i uppgift att planera hur fordonet ska röra sig för att på ett säkert sätt nå ett överordnat mål, och dels den banföljande regulatorn vars uppgift är att se till att den planerade manövern faktiskt utförs i praktiken trots störningar och modellfel. I denna avhandling presenteras flera olika algoritmer för att planera och utföra komplexa manövrar för lastbilar med olika typer av släpvagnskombinationer. De presenterade algoritmerna är avsedda att användas som avancerade förarstödsystem eller som komponenter i ett helt autonomt system. Även om den primära applikationen i denna avhandling är lastbilar med släp, kan många av de förslagna algoritmerna även användas för en rad andra system, så som drönare och båtar. Experimentell validering är viktigt för att motivera att en föreslagen algoritm är användbar i praktiken. I denna avhandling har flera av de föreslagna planerings- och reglerstrategierna implementerats på en småskalig testplattform och utvärderats i en kontrollerad labbmiljö. Utöver detta har även flera av de föreslagna ramverken implementerats och utvärderats i fältexperiment på en fullskalig test-plattform som har utvecklats i samarbete med Scania CV. Här utvärderas även en ny metod för att skatta släpvagnens beteende genom att endast utnyttja information från sensorer monterade på lastbilen, vilket gör det föreslagna ramverket oberoende av sensorer monterade på släpvagnen.

Book Sample based Motion Planning in High dimensional and Differentially constrained Systems

Download or read book Sample based Motion Planning in High dimensional and Differentially constrained Systems written by Alexander C. Shkolnik and published by . This book was released on 2010 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: State of the art sample-based path planning algorithms, such as the Rapidly-exploring Random Tree (RRT), have proven to be effective in path planning for systems subject to complex kinematic and geometric constraints. The performance of these algorithms, however, degrade as the dimension of the system increases. Furthermore, sample-based planners rely on distance metrics which do not work well when the system has differential constraints. Such constraints are particularly challenging in systems with non-holonomic and underactuated dynamics. This thesis develops two intelligent sampling strategies to help guide the search process. To reduce sensitivity to dimension, sampling can be done in a low-dimensional task space rather than in the high-dimensional state space. Altering the sampling strategy in this way creates a Voronoi Bias in task space, which helps to guide the search, while the RRT continues to verify trajectory feasibility in the full state space. Fast path planning is demonstrated using this approach on a 1500-link manipulator. To enable task-space biasing for underactuated systems, a hierarchical task space controller is developed by utilizing partial feedback linearization. Another sampling strategy is also presented, where the local reachability of the tree is approximated, and used to bias the search, for systems subject to differential constraints. Reachability guidance is shown to improve search performance of the RRT by an order of magnitude when planning on a pendulum and non-holonomic car. The ideas of task-space biasing and reachability guidance are then combined for demonstration of a motion planning algorithm implemented on LittleDog, a quadruped robot. The motion planning algorithm successfully planned bounding trajectories over extremely rough terrain.

Book Robotics Research

Download or read book Robotics Research written by Antonio Bicchi and published by Springer. This book was released on 2017-07-24 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: ISRR, the "International Symposium on Robotics Research", is one of robotics pioneering Symposia, which has established over the past two decades some of the field's most fundamental and lasting contributions. This book presents the results of the seventeenth edition of "Robotics Research" ISRR15, offering a collection of a broad range of topics in robotics. The content of the contributions provides a wide coverage of the current state of robotics research.: the advances and challenges in its theoretical foundation and technology basis, and the developments in its traditional and new emerging areas of applications. The diversity, novelty, and span of the work unfolding in these areas reveal the field's increased maturity and expanded scope and define the state of the art of robotics and its future direction.

Book Robotics Research

Download or read book Robotics Research written by Aude Billard and published by Springer Nature. This book was released on 2023-03-07 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the 2022 edition of the International Symposium of Robotics Research (ISRR) offer a series of peer-reviewed chapters that report on the most recent research results in robotics, in a variety of domains of robotics including robot design, control, robot vision, robot learning, planning, and integrated robot systems. The proceedings entail also invited contributions that offer provocative new ideas, open-ended themes, and new directions for robotics, written by some of the most renown international researchers in robotics. As one of the pioneering symposia in robotics, ISRR has established some of the most fundamental and lasting contributions in the field since 1983. ISRR promotes the development and dissemination of ground-breaking research and technological innovation in robotics useful to society by providing a lively, intimate, forward-looking forum for discussion and debate about the status and future trends of robotics, with emphasis on its potential role to benefit humans.

Book Adaptive State    Time Lattices  A Contribution to Mobile Robot Motion Planning in Unstructured Dynamic Environments

Download or read book Adaptive State Time Lattices A Contribution to Mobile Robot Motion Planning in Unstructured Dynamic Environments written by Petereit, Janko and published by KIT Scientific Publishing. This book was released on 2017-01-20 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mobile robot motion planning in unstructured dynamic environments is a challenging task. Thus, often suboptimal methods are employed which perform global path planning and local obstacle avoidance separately. This work introduces a holistic planning algorithm which is based on the concept of state.

Book Robot Motion Planning

Download or read book Robot Motion Planning written by Jean-Claude Latombe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the ultimate goals in Robotics is to create autonomous robots. Such robots will accept high-level descriptions of tasks and will execute them without further human intervention. The input descriptions will specify what the user wants done rather than how to do it. The robots will be any kind of versatile mechanical device equipped with actuators and sensors under the control of a computing system. Making progress toward autonomous robots is of major practical inter est in a wide variety of application domains including manufacturing, construction, waste management, space exploration, undersea work, as sistance for the disabled, and medical surgery. It is also of great technical interest, especially for Computer Science, because it raises challenging and rich computational issues from which new concepts of broad useful ness are likely to emerge. Developing the technologies necessary for autonomous robots is a formidable undertaking with deep interweaved ramifications in auto mated reasoning, perception and control. It raises many important prob lems. One of them - motion planning - is the central theme of this book. It can be loosely stated as follows: How can a robot decide what motions to perform in order to achieve goal arrangements of physical objects? This capability is eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world. The minimum one would expect from an autonomous robot is the ability to plan its x Preface own motions.

Book Massive Parallelism and Sampling Strategies for Robust and Real time Robotic Motion Planning

Download or read book Massive Parallelism and Sampling Strategies for Robust and Real time Robotic Motion Planning written by Brian Ichter and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Motion planning is a fundamental problem in robotics, whereby one seeks to compute a low-cost trajectory from an initial state to a goal region that avoids any obstacles. Sampling-based motion planning algorithms have emerged as an effective paradigm for planning with complex, high-dimensional robotic systems. These algorithms maintain only an implicit representation of the state space, constructed by sampling the free state space and locally connecting samples (under the supervision of a collision checking module). This thesis presents approaches towards enabling real-time and robust sampling-based motion planning with improved sampling strategies and massive parallelism. In the first part of this thesis, we discuss algorithms to leverage massively parallel hardware (GPUs) to accelerate planning and to consider robustness during the planning process. We present an algorithm capable of planning at rates amenable to application within control loops, ∼10 ms. This algorithm uses approximate dynamic programming to explore the state space in a massively-parallel, near-optimal manner. We further present two algorithms capable of real-time, uncertainty-aware and perception-aware motion planning that exhaustively explore the state space via a multiobjective search. This search identifies a Pareto set of promising paths (in terms of cost and robustness) and certifies their robustness via Monte Carlo methods. We demonstrate the effectiveness of these algorithm in numerical simulations and a physical experiment on a quadrotor. In the second part of this thesis, we examine sampling-strategies for probing the state space; traditionally this has been uniform, independent, and identically distributed (i.i.d.) random points. We present a methodology for biasing the sample distribution towards regions of the state space in which the solution trajectory is likely to lie. This distribution is learned via a conditional variational autoencoder, allowing a general methodology, which can be used in combination with any sampling- based planner and can effectively exploit the underlying structure of a planning problem while maintaining the theoretical guarantees of sampling-based approaches. We also analyze the use of deterministic, low-dispersion samples instead of i.i.d. random points. We show that this allows deterministic asymptotic optimality (as opposed to probabilistic), a convergence rate bound in terms of the sample dispersion, reduced computational complexity, and improved practical performance. The technical approaches in this work are applicable to general robotic systems and lay the foundations of robustness and algorithmic speed required for robotic systems operating in the world.

Book Algorithmic Foundations of Robotics XV

Download or read book Algorithmic Foundations of Robotics XV written by Steven M. LaValle and published by Springer Nature. This book was released on 2022-12-14 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes significant recent research on robotic algorithms. It has been written by leading experts in the field. The 15th Workshop on the Algorithmic Foundations of Robotics (WAFR) was held on June 22–24, 2022, at the University of Maryland, College Park, Maryland. Each chapter represents an exciting state-of-the-art development in robotic algorithms that was presented at this 15th incarnation of WAFR. Different chapters combine ideas from a wide variety of fields, spanning and combining planning (for tasks, paths, motion, navigation, coverage, and patrol), computational geometry and topology, control theory, machine learning, formal methods, game theory, information theory, and theoretical computer science. Many of these papers explore new and interesting problems and problem variants that include human–robot interaction, planning and reasoning under uncertainty, dynamic environments, distributed decision making, multi-agent coordination, and heterogeneity.

Book Planning Algorithms

    Book Details:
  • Author : Steven M. LaValle
  • Publisher : Cambridge University Press
  • Release : 2006-05-29
  • ISBN : 1139455176
  • Pages : 1029 pages

Download or read book Planning Algorithms written by Steven M. LaValle and published by Cambridge University Press. This book was released on 2006-05-29 with total page 1029 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning, but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the 'configuration spaces' of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. This text and reference is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

Book Robust Sampling based Motion Planning for Autonomous Vehicles in Uncertain Environments

Download or read book Robust Sampling based Motion Planning for Autonomous Vehicles in Uncertain Environments written by Brandon Douglas Luders and published by . This book was released on 2014 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: While navigating, autonomous vehicles often must overcome significant uncertainty in their understanding of the world around them. Real-world environments may be cluttered and highly dynamic, with uncertainty in both the current state and future evolution of environmental constraints. The vehicle may also face uncertainty in its own motion. To provide safe navigation under such conditions, motion planning algorithms must be able to rapidly generate smooth, certifiably robust trajectories in real-time. The primary contribution of this thesis is the development of a real-time motion planning framework capable of generating feasible paths for autonomous vehicles in complex environments, with robustness guarantees under both internal and external uncertainty. By leveraging the trajectory-wise constraint checking of sampling-based algorithms, and in particular rapidly-exploring random trees (RRT), the proposed algorithms can efficiently evaluate and enforce complex robustness conditions. For linear systems under bounded uncertainty, a sampling-based motion planner is presented which iteratively tightens constraints in order to guarantee safety for all feasible uncertainty realizations. The proposed bounded-uncertainty RRT* (BURRT*) algorithm scales favorably with environment complexity. Additionally, by building upon RRT*, BU-RRT* is shown to be asymptotically optimal, enabling it to efficiently generate and optimize robust, dynamically feasible trajectories. For large and/or unbounded uncertainties, probabilistically feasible planning is provided through the proposed chance-constrained RRT (CC-RRT) algorithm. Paths generated by CC-RRT are guaranteed probabilistically feasible for linear systems under Gaussian uncertainty, with extensions considered for nonlinear dynamics, output models, and/or non-Gaussian uncertainty. Probabilistic constraint satisfaction is represented in terms of chance constraints, extending existing approaches by considering both internal and external uncertainty, subject to time-step-wise and path-wise feasibility constraints. An explicit bound on the total risk of constraint violation is developed which can be efficiently evaluated online for each trajectory. The proposed CC-RRT* algorithm extends this approach to provide asymptotic optimality guarantees; an admissible risk-based objective uses the risk bounds to incentivize risk-averse trajectories. Applications of this framework are shown for several motion planning domains, including parafoil terminal guidance and urban navigation, where the system is subject to challenging environmental and uncertainty characterizations. Hardware results demonstrate a mobile robot utilizing this framework to safely avoid dynamic obstacles.

Book Motion Planning for Dynamic Agents

Download or read book Motion Planning for Dynamic Agents written by Zain Anwar Ali and published by BoD – Books on Demand. This book was released on 2024-01-17 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, Motion Planning for Dynamic Agents, presents a thorough overview of current advancements and provides insights into the fascinating and vital field of aeronautics. It focuses on modern research and development, with an emphasis on dynamic agents. The chapters address a wide range of complex capabilities, including formation control, guidance and navigation, control techniques, wide-space coverage for inspection and exploration, and the best pathfinding in unknown territory. This book is a valuable resource for scholars, practitioners, and amateurs alike due to the variety of perspectives that are included, which help readers gain a sophisticated understanding of the difficulties and developments in the area of study.

Book Autonomous Mobile Robots and Multi Robot Systems

Download or read book Autonomous Mobile Robots and Multi Robot Systems written by Eugene Kagan and published by John Wiley & Sons. This book was released on 2019-12-16 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a theoretical and practical guide to the communication and navigation of autonomous mobile robots and multi-robot systems This book covers the methods and algorithms for the navigation, motion planning, and control of mobile robots acting individually and in groups. It addresses methods of positioning in global and local coordinates systems, off-line and on-line path-planning, sensing and sensors fusion, algorithms of obstacle avoidance, swarming techniques and cooperative behavior. The book includes ready-to-use algorithms, numerical examples and simulations, which can be directly implemented in both simple and advanced mobile robots, and is accompanied by a website hosting codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming consists of four main parts. The first looks at the models and algorithms of navigation and motion planning in global coordinates systems with complete information about the robot’s location and velocity. The second part considers the motion of the robots in the potential field, which is defined by the environmental states of the robot's expectations and knowledge. The robot's motion in the unknown environments and the corresponding tasks of environment mapping using sensed information is covered in the third part. The fourth part deals with the multi-robot systems and swarm dynamics in two and three dimensions. Provides a self-contained, theoretical guide to understanding mobile robot control and navigation Features implementable algorithms, numerical examples, and simulations Includes coverage of models of motion in global and local coordinates systems with and without direct communication between the robots Supplemented by a companion website offering codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming is an excellent tool for researchers, lecturers, senior undergraduate and graduate students, and engineers dealing with mobile robots and related issues.