EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Role of Thermal Resistance on the Performance of Superconducting Radio Frequency Cavities

Download or read book Role of Thermal Resistance on the Performance of Superconducting Radio Frequency Cavities written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal stability is an important parameter for the operation of the superconducting radio frequency (SRF) cavities used in particle accelerators. The rf power dissipated on the inner surface of the cavities is conducted to the helium bath cooling the outer cavity surface and the equilibrium temperature of the inner surface depends on the thermal resistance. In this manuscript, we present the results of direct measurements of thermal resistance on 1.3 GHz single cell SRF cavities made from high purity large-grain and fine-grain niobium as well as their rf performance for different treatments applied to outer cavity surface in order to investigate the role of the Kapitza resistance to the overall thermal resistance and to the SRF cavity performance. The results show no significant impact of the thermal resistance to the SRF cavity performance after chemical polishing, mechanical polishing or anodization of the outer cavity surface. Temperature maps taken during the rf test show nonuniform heating of the surface at medium rf fields. Calculations of Q0(Bp) curves using the thermal feedback model show good agreement with experimental data at 2 and 1.8 K when a pair-braking term is included in the calculation of the Bardeen-Cooper-Schrieffer surface resistance. In conclusion, these results indicate local intrinsic nonlinearities of the surface resistance, rather than purely thermal effects, to be the main cause for the observed field dependence of Q0(Bp).

Book RF Superconductivity for Accelerators

Download or read book RF Superconductivity for Accelerators written by Hasan Padamsee and published by John Wiley & Sons. This book was released on 2008-02-26 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces some of the key ideas of this exciting field, using a pedagogic approach, and presents a comprehensive overview of the field. It is divided into four parts. The first part introduces the basic concepts of microwave cavities for particle acceleration. The second part is devoted to the observed behavior of superconducting cavities. In the third part,general issues connected with beam-cavity interaction and the related issues for the critical components are covered. The final part discusses applications of superconducting cavities to frontier accelerators of the future, drawing heavily on the examples that are in their most advanced stage. Each part of the book ends in a Problems section to illustrate and amplify text material as well as draw on example applications of superconducting cavities to existing and future accelerators.

Book Investigation of the Thermal Transport in Superconducting Niobium and Tantalum

Download or read book Investigation of the Thermal Transport in Superconducting Niobium and Tantalum written by Peng Xu and published by . This book was released on 2019 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superconducting radio frequency (SRF) cavities fabricated from bulk high purity niobium (Nb) are increasingly used for particle accelerators to achieve continuous operation. Even in the superconducting regime, residual resistance and small imperfections on the RF surface can dissipate energy and cause local heating that leads to cavity quench. Large values of thermal conductivity can mitigate local temperature excursions and prevent cavity quench, thus improving cavity performance. Understanding thermal transport in bulk and thin film superconducting Nb may guide thermal design of current and next generation SRF cavities.The thermal conductivity of metals is composed of electronic and lattice (phonon) components. In normal conductors, the electronic component dominates, and in superconducting metals, as the temperature drops below the critical temperature, phonons become increasingly important carriers of thermal energy. A widely used model of thermal conductivity in superconductors omits explicit accounting of the effect of dislocations, which result from deformation. Here, this model is extended by accounting for the effects of phonons scattered by dislocations independent from boundary scattering. This extended model agrees better with measurements of thermal conductivity in deformed Nb samples, especially at temperatures T less than 3 K. An apparent threshold of dislocation density Nd is found to be Nd = O(1012) m−2 for Nb and when applied to tantalum (Ta), it is Nd = O(1011) m−2. There is little contribution to the thermal conductivity when the dislocation density is less than this threshold. This model can also be used to estimatethe dislocation density by fitting measured values of thermal conductivity.Examination of thermal conductivity data for superconducting Nb shows that there is often a local maximum, a so-called phonon peak, kpp. The temperature at which this kpp occurs Tpp is between 1.72 K and 2.35 K and shifts for samples after deformation. It is well known that the magnitude of kpp decreases as the material is deformed, and hence with increasing Nd. Less cited is that Tpp increases with increasing Nd. This may affect the operating temperature of an SRF cavity. At a certain level deformation (i.e., 4.7% deformation for a residual resistivity ratio RRR = 185), the phonon peak disappears. More deformation is needed for higher RRR, (i.e., greater purity).The models discussed above require estimating several parameters from thermal conductivity measurements and may be best suited to explaining the relative importance of the several scattering mechanisms. For predicting thermal conductivity from basic material variables, the Boltzmann transport equation (BTE) is solved by two methods to predict the lattice component of thermal conductivity. One method uses a substitution of variables from frequency to wavevector in the Callaway model to include the nonlinear phonon dispersion relationship for the longitudinal acoustic (LA) and transverse acoustic (TA) phonon polarizations. This model incorporates a relaxation time approximation using Matthiessen's rule to consider phonon scattering by electrons, boundaries, and dislocations. Another method to predict the lattice thermal conductivity uses an energy-based, variance-reduced Monte Carlo (MC) solution to the BTE for phonons. The MC solution allows more general consideration of the individual scattering mechanisms. It may also be generalized for more complex geometries. The MC solution technique was first verified by comparing the predicted thermal conductivity in bulk Si and Si nanowires with experimental results. Both solutions of the BTE for the lattice thermal conductivity of undeformed and deformed superconducting Nb agreed well with experimental values. The MC model was also used to demonstrate that interstitial impurities must be near saturation to change the lattice thermal conductivity of Nb. The MC solution was also effective in predicting the lattice thermal conductivity of superconducting Ta, with the appropriate change in dispersion relation and other material parameters.

Book Superconducting Thin Films for the Enhancement of Superconducting Radio Frequency Accelerator Cavities

Download or read book Superconducting Thin Films for the Enhancement of Superconducting Radio Frequency Accelerator Cavities written by Matthew C. Burton and published by . This book was released on 2017 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bulk niobium (Nb) superconducting radio frequency (SRF) cavities are currently the preferred method for acceleration of charged particles at accelerating facilities around the world. However, bulk Nb cavities have poor thermal conductance, impose material and design restrictions on other components of a particle accelerator, have low reproducibility and are approaching the fundamental material-dependent accelerating field limit of approximately 50MV/m. Since the SRF phenomena occurs at surfaces within a shallow depth of ~1 μm, a proposed solution to this problem has been to utilize thin film technology to deposit superconducting thin films on the interior of cavities to engineer the active SRF surface in order to achieve cavities with enhanced properties and performance. Two proposed thin film applications for SRF cavities are: 1) Nb thin films coated on bulk cavities made of suitable castable metals (such as copper or aluminum) and 2) multilayer films designed to increase the accelerating gradient and performance of SRF cavities. While Nb thin films on copper (Cu) cavities have been attempted in the past using DC magnetron sputtering (DCMS), such cavities have never performed at the bulk Nb level. However, new energetic condensation techniques for film deposition, such as High Power Impulse Magnetron Sputtering (HiPIMS), offer the opportunity to create suitably thick Nb films with improved density, microstructure and adhesion compared to traditional DCMS. Clearly use of such novel technique requires fundamental studies to assess surface evolution and growth modes during deposition and resulting microstructure and surface morphology and the correlation with RF superconducting properties. Here we present detailed structure-property correlative research studies done on Nb/Cu thin films and NbN- and NbTiN-based multilayers made using HiPIMS and DCMS, respectively.

Book Superconducting Technology

Download or read book Superconducting Technology written by Kristian Fossheim and published by World Scientific. This book was released on 1991 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an interdisciplinary selection of timely articles which cover a wide range of superconducting technologies ranging from high tech medicine (10-12 Gauss) to multipurpose sensors, microwaves, radio engineering, magnet technology for accelerators, magnetic energy storage, and power transmission on the 109 watt scale. It is aimed primarily at the non-specialist and will be suitable as an introductory course book for those in the relevant fields and related industries. As shown in the title several examples of high-c applications are included. While low-Tc is still the leading technology, for instance, in cables and SQUIDS, case studies in these areas are presented.

Book Superconducting Radiofrequency Technology for Accelerators

Download or read book Superconducting Radiofrequency Technology for Accelerators written by Hasan Padamsee and published by John Wiley & Sons. This book was released on 2023-05-15 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superconducting Radiofrequency Technology for Accelerators Single source reference enabling readers to understand and master state-of-the-art accelerator technology Superconducting Radiofrequency Technology for Accelerators provides a quick yet thorough overview of the key technologies for current and future accelerators, including those projected to enable breakthrough developments in materials science, nuclear and astrophysics, high energy physics, neutrino research and quantum computing. The work is divided into three sections. The first part provides a review of RF superconductivity basics, the second covers new techniques such as nitrogen doping, nitrogen infusion, oxide-free niobium, new surface treatments, and magnetic flux expulsion, high field Q slope, complemented by discussions of the physics of the improvements stemming from diagnostic techniques and surface analysis as well as from theory. The third part reviews the on-going applications of RF superconductivity in already operational facilities and those under construction such as light sources, proton accelerators, neutron and neutrino sources, ion accelerators, and crab cavity facilities. The third part discusses planned accelerator projects such as the International Linear Collider, the Future Circular Collider, the Chinese Electron Positron Collider, and the Proton Improvement Plan-III facility at Fermilab as well as exciting new developments in quantum computing using superconducting niobium cavities. Written by the leading expert in the field of radiofrequency superconductivity, Superconducting Radiofrequency Technology for Accelerators covers other sample topics such as: Fabrication and processing on Nb-based SRF structures, covering cavity fabrication, preparation, and a decade of progress in the field SRF physics, covering zero DC resistance, the Meissner effect, surface resistance and surface impedance in RF fields, and non-local response of supercurrent N-doping and residual resistance, covering trapped DC flux losses, hydride losses, and tunneling measurements Theories for anti-Q-slope, covering the Xiao theory, the Gurevich theory, non-equilibrium superconductivity, and two fluid model based on weak defects Superconducting Radiofrequency Technology for Accelerators is an essential reference for high energy physicists, power engineers, and electrical engineers who want to understand the latest developments of accelerator technology and be able to harness it to further research interest and practical applications.

Book Superconducting Properties of Niobium Radio frequency Cavities

Download or read book Superconducting Properties of Niobium Radio frequency Cavities written by Gianluigi Ciovati and published by LAP Lambert Academic Publishing. This book was released on 2012 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superconducting radio-frequency (SRF) cavities are used to increase the energy of a charged particle beam in particle accelerators throughout the world. Bulk niobium is the material of choice to fabricate SRF cavities and their performance at cryogenic temperatures is characterized by a non-linearity of the surface resistance as a function of the RF field, in absence of field emission, which limits the operational accelerating gradient. This book presents the results on the investigation of such non-linearity in cavities which received different surface and bulk treatments as well as cavities made of single-crystal niobium. The experimental methods include measurements of the surface impedance as a function of temperature, of the quality factor as a function of the RF field below 4.2 K, and the excitation of different resonant modes. A thermometry system was used to better characterize the loss mechanisms. This book consists of the author's PhD dissertation at Old Dominion University (ODU) under the supervision of Prof. Colm T. Whelan of ODU and Dr. Peter Kneisel of Jefferson Lab. This book should be useful to students or young researchers in the field of SRF for accelerators.

Book RF Superconductivity

Download or read book RF Superconductivity written by Hasan Padamsee and published by John Wiley & Sons. This book was released on 2009-03-30 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second book to RF Superconducting, written by one of the leading experts. The book provides fast and up-to-date access to the latest advances in the key technology for future accelerators. Experts as well as newcomers to the field will benefit from the discussion of progress in the basic science, technology as well as recent and forthcoming applications. Researchers in accelerator physics will also find much that is relevant to their discipline.

Book Effect of Low Temperature Baking on the RF Properties of Niobium Superconducting Cavities for Particle Accelerators

Download or read book Effect of Low Temperature Baking on the RF Properties of Niobium Superconducting Cavities for Particle Accelerators written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models. This paper describes the results of these experiments and comments on existing models to explain the effect of baking on the performance of niobium RF cavities.

Book High Field Q Slope and the Baking Effect

Download or read book High Field Q Slope and the Baking Effect written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1991 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1973 with total page 990 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1991 with total page 1586 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reviews of Accelerator Science and Technology

Download or read book Reviews of Accelerator Science and Technology written by Alexander W. Chao and published by World Scientific. This book was released on 2013-01-28 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to superconducting technology and its applications, including superconducting magnets (SC magnets) and superconducting radio-frequency (SRF) cavities.

Book High Energy Physics Index

Download or read book High Energy Physics Index written by and published by . This book was released on 1994 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1993-11 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: