EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Robustness in Data Analysis

Download or read book Robustness in Data Analysis written by Georgy L. Shevlyakov and published by Walter de Gruyter. This book was released on 2011-12-07 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.

Book Robustness in Statistics

Download or read book Robustness in Statistics written by Robert L. Launer and published by . This book was released on 1979 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to robust estimation; The robustness of residual displays; Robust smoothing; Robust pitman-like estimators; Robust estimation in the presence of outliers; Study of robustness by simulation: particularly improvement by adjustment and combination; Robust techniques for the user; Application of robust regression to trajectory data reduction; Tests for censoring of extreme values (especially) when population distributions are incompletely defined; Robust estimation for time series autoregressions; Robust techniques in communication; Robustness in the strategy of scientific model building; A density-quantile function perspective on robust.

Book Robust Statistics

    Book Details:
  • Author : Ricardo A. Maronna
  • Publisher : John Wiley & Sons
  • Release : 2019-01-04
  • ISBN : 1119214688
  • Pages : 466 pages

Download or read book Robust Statistics written by Ricardo A. Maronna and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Book Robustness Tests for Quantitative Research

Download or read book Robustness Tests for Quantitative Research written by Eric Neumayer and published by Cambridge University Press. This book was released on 2017-08-17 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly accessible book presents robustness testing as the methodology for conducting quantitative analyses in the presence of model uncertainty.

Book Understanding Robust and Exploratory Data Analysis

Download or read book Understanding Robust and Exploratory Data Analysis written by David C. Hoaglin and published by John Wiley & Sons. This book was released on 2000-06-02 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in hardcover in 1982, this book is now offered in a Wiley Classics Library edition. A contributed volume, edited by some of the preeminent statisticians of the 20th century, Understanding of Robust and Exploratory Data Analysis explains why and how to use exploratory data analysis and robust and resistant methods in statistical practice.

Book Robustness in Statistics

Download or read book Robustness in Statistics written by Robert L. Launer and published by Academic Press. This book was released on 2014-05-12 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robustness in Statistics contains the proceedings of a Workshop on Robustness in Statistics held on April 11-12, 1978, at the Army Research Office in Research Triangle Park, North Carolina. The papers review the state of the art in statistical robustness and cover topics ranging from robust estimation to the robustness of residual displays and robust smoothing. The application of robust regression to trajectory data reduction is also discussed. Comprised of 14 chapters, this book begins with an introduction to robust estimation, paying particular attention to iteration schemes and error structure of estimators. Sensitivity and influence curves as well as their connection with jackknife estimates are described. The reader is then introduced to a simple analog of trimmed means that can be used for studying residuals from a robust point-of-view; a class of robust estimators (called P-estimators) based on the location and scale-invariant Pitman estimators of location; and robust estimation in the presence of outliers. Subsequent chapters deal with robust regression and its use to reduce trajectory data; tests for censoring of extreme values, especially when population distributions are incompletely defined; and robust estimation for time series autoregressions. This monograph should be of interest to mathematicians and statisticians.

Book Introduction to Statistical Analysis of Laboratory Data

Download or read book Introduction to Statistical Analysis of Laboratory Data written by Alfred Bartolucci and published by John Wiley & Sons. This book was released on 2015-12-02 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Statistical Analysis of Laboratory Data presents a detailed discussion of important statistical concepts and methods of data presentation and analysis Provides detailed discussions on statistical applications including a comprehensive package of statistical tools that are specific to the laboratory experiment process Introduces terminology used in many applications such as the interpretation of assay design and validation as well as “fit for purpose” procedures including real world examples Includes a rigorous review of statistical quality control procedures in laboratory methodologies and influences on capabilities Presents methodologies used in the areas such as method comparison procedures, limit and bias detection, outlier analysis and detecting sources of variation Analysis of robustness and ruggedness including multivariate influences on response are introduced to account for controllable/uncontrollable laboratory conditions

Book Robust Statistics

    Book Details:
  • Author : Frank R. Hampel
  • Publisher : John Wiley & Sons
  • Release : 2011-09-20
  • ISBN : 1118150686
  • Pages : 502 pages

Download or read book Robust Statistics written by Frank R. Hampel and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.

Book Introduction to Robust Estimation and Hypothesis Testing

Download or read book Introduction to Robust Estimation and Hypothesis Testing written by Rand R. Wilcox and published by Academic Press. This book was released on 2012-01-12 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--

Book Robust Bayesian Analysis

    Book Details:
  • Author : David Rios Insua
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461213061
  • Pages : 431 pages

Download or read book Robust Bayesian Analysis written by David Rios Insua and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.

Book Robustness in Statistical Forecasting

Download or read book Robustness in Statistical Forecasting written by Yuriy Kharin and published by Springer Science & Business Media. This book was released on 2013-09-04 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers solutions to such topical problems as developing mathematical models and descriptions of typical distortions in applied forecasting problems; evaluating robustness for traditional forecasting procedures under distortionism and more.

Book Robust Data Mining

    Book Details:
  • Author : Petros Xanthopoulos
  • Publisher : Springer Science & Business Media
  • Release : 2012-11-28
  • ISBN : 1441998780
  • Pages : 67 pages

Download or read book Robust Data Mining written by Petros Xanthopoulos and published by Springer Science & Business Media. This book was released on 2012-11-28 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise. This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of robust data mining research field and presents the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. This brief will appeal to theoreticians and data miners working in this field.

Book Encyclopedia of Operations Research and Management Science

Download or read book Encyclopedia of Operations Research and Management Science written by Saul I. Gass and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operations Research: 1934-1941," 35, 1, 143-152; "British The goal of the Encyclopedia of Operations Research and Operational Research in World War II," 35, 3, 453-470; Management Science is to provide to decision makers and "U. S. Operations Research in World War II," 35, 6, 910-925; problem solvers in business, industry, government and and the 1984 article by Harold Lardner that appeared in academia a comprehensive overview of the wide range of Operations Research: "The Origin of Operational Research," ideas, methodologies, and synergistic forces that combine to 32, 2, 465-475. form the preeminent decision-aiding fields of operations re search and management science (OR/MS). To this end, we The Encyclopedia contains no entries that define the fields enlisted a distinguished international group of academics of operations research and management science. OR and MS and practitioners to contribute articles on subjects for are often equated to one another. If one defines them by the which they are renowned. methodologies they employ, the equation would probably The editors, working with the Encyclopedia's Editorial stand inspection. If one defines them by their historical Advisory Board, surveyed and divided OR/MS into specific developments and the classes of problems they encompass, topics that collectively encompass the foundations, applica the equation becomes fuzzy. The formalism OR grew out of tions, and emerging elements of this ever-changing field. We the operational problems of the British and U. s. military also wanted to establish the close associations that OR/MS efforts in World War II.

Book Robust Diagnostic Regression Analysis

Download or read book Robust Diagnostic Regression Analysis written by Anthony Atkinson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs are used to understand the relationship between a regression model and the data to which it is fitted. The authors develop new, highly informative graphs for the analysis of regression data and for the detection of model inadequacies. As well as illustrating new procedures, the authors develop the theory of the models used, particularly for generalized linear models. The book provides statisticians and scientists with a new set of tools for data analysis. Software to produce the plots is available on the authors website.

Book Robust Methods for Data Reduction

Download or read book Robust Methods for Data Reduction written by Alessio Farcomeni and published by CRC Press. This book was released on 2016-01-13 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Methods for Data Reduction gives a non-technical overview of robust data reduction techniques, encouraging the use of these important and useful methods in practical applications. The main areas covered include principal components analysis, sparse principal component analysis, canonical correlation analysis, factor analysis, clustering, dou

Book Robustness in Econometrics

Download or read book Robustness in Econometrics written by Vladik Kreinovich and published by Springer. This book was released on 2017-02-11 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent research on robustness in econometrics. Robust data processing techniques – i.e., techniques that yield results minimally affected by outliers – and their applications to real-life economic and financial situations are the main focus of this book. The book also discusses applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that uses mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. In day-by-day data, we often encounter outliers that do not reflect the long-term economic trends, e.g., unexpected and abrupt fluctuations. As such, it is important to develop robust data processing techniques that can accommodate these fluctuations.

Book Robust Regression and Outlier Detection

Download or read book Robust Regression and Outlier Detection written by Peter J. Rousseeuw and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "The writing style is clear and informal, and much of thediscussion is oriented to application. In short, the book is akeeper." –Mathematical Geology "I would highly recommend the addition of this book to thelibraries of both students and professionals. It is a usefultextbook for the graduate student, because it emphasizes both thephilosophy and practice of robustness in regression settings, andit provides excellent examples of precise, logical proofs oftheorems. . . .Even for those who are familiar with robustness, thebook will be a good reference because it consolidates the researchin high-breakdown affine equivariant estimators and includes anextensive bibliography in robust regression, outlier diagnostics,and related methods. The aim of this book, the authors tell us, is‘to make robust regression available for everyday statisticalpractice.’ Rousseeuw and Leroy have included all of thenecessary ingredients to make this happen." –Journal of the American Statistical Association