EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Robust Sampling based Motion Planning for Autonomous Vehicles in Uncertain Environments

Download or read book Robust Sampling based Motion Planning for Autonomous Vehicles in Uncertain Environments written by Brandon Douglas Luders and published by . This book was released on 2014 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: While navigating, autonomous vehicles often must overcome significant uncertainty in their understanding of the world around them. Real-world environments may be cluttered and highly dynamic, with uncertainty in both the current state and future evolution of environmental constraints. The vehicle may also face uncertainty in its own motion. To provide safe navigation under such conditions, motion planning algorithms must be able to rapidly generate smooth, certifiably robust trajectories in real-time. The primary contribution of this thesis is the development of a real-time motion planning framework capable of generating feasible paths for autonomous vehicles in complex environments, with robustness guarantees under both internal and external uncertainty. By leveraging the trajectory-wise constraint checking of sampling-based algorithms, and in particular rapidly-exploring random trees (RRT), the proposed algorithms can efficiently evaluate and enforce complex robustness conditions. For linear systems under bounded uncertainty, a sampling-based motion planner is presented which iteratively tightens constraints in order to guarantee safety for all feasible uncertainty realizations. The proposed bounded-uncertainty RRT* (BURRT*) algorithm scales favorably with environment complexity. Additionally, by building upon RRT*, BU-RRT* is shown to be asymptotically optimal, enabling it to efficiently generate and optimize robust, dynamically feasible trajectories. For large and/or unbounded uncertainties, probabilistically feasible planning is provided through the proposed chance-constrained RRT (CC-RRT) algorithm. Paths generated by CC-RRT are guaranteed probabilistically feasible for linear systems under Gaussian uncertainty, with extensions considered for nonlinear dynamics, output models, and/or non-Gaussian uncertainty. Probabilistic constraint satisfaction is represented in terms of chance constraints, extending existing approaches by considering both internal and external uncertainty, subject to time-step-wise and path-wise feasibility constraints. An explicit bound on the total risk of constraint violation is developed which can be efficiently evaluated online for each trajectory. The proposed CC-RRT* algorithm extends this approach to provide asymptotic optimality guarantees; an admissible risk-based objective uses the risk bounds to incentivize risk-averse trajectories. Applications of this framework are shown for several motion planning domains, including parafoil terminal guidance and urban navigation, where the system is subject to challenging environmental and uncertainty characterizations. Hardware results demonstrate a mobile robot utilizing this framework to safely avoid dynamic obstacles.

Book Robust Motion Planning for Autonomous Tracked Vehicles in Deformable Terrain

Download or read book Robust Motion Planning for Autonomous Tracked Vehicles in Deformable Terrain written by Sang Uk Lee (S.M.) and published by . This book was released on 2016 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ensuring the safety of autonomous vehicles during operation is a challenging task. Numerous factors such as process noise, sensor noise, incorrect model etc. can yield uncertainty in robot's state. Especially for tracked vehicles operating on rough terrain, vehicle slip due to vehicle terrain interaction affects the vehicle system significantly. In such cases, the motion planning of the autonomous vehicle must be performed robustly, considering the uncertain factors in advance of the real-time navigation. The primary contribution of this thesis is to present a robust optimal global planner for autonomous tracked vehicles operating in off-road terrain with uncertain slip. In order to achieve this goal, three tasks must be completed. First, the motion planner must be able to work efficiently under the non-holonomic vehicle system model. An approximate method is applied to the tracked vehicle system ensuring both optimality and efficiency. Second, the motion planner should ensure robustness. For this, a robust incremental sampling based motion planning algorithm (CC-RRT*) is combined with the LQG-MP algorithm. CC-RRT* yields the optimal and probabilistically feasible trajectory by using a chance constrained approach under the RRT* framework. LQG-MP provides the capability of considering the role of compensator in the motion planning phase and bounds the degree of uncertainty to appropriate size. Third, the effect of slip on the vehicle system must be modeled properly. This can be done in advance of operation if we have experimental data and full information about the environment. However, in case where such knowledge is not available, the online slip estimation can be performed using system identification method such as the IPEM algorithm. Simulation results shows that the resulting algorithms are efficient, optimal, and robust. The simulation was performed on a realistic scenario with several important factors that can increase the uncertainty of the vehicle. Experimental results are also provided to support the validity of the proposed algorithm. The proposed framework can be applied to other robotic systems where robustness is an important issue.

Book A Robust Motion Planning Approach for Autonomous Driving in Urban Areas

Download or read book A Robust Motion Planning Approach for Autonomous Driving in Urban Areas written by Gaston A. Fiore and published by . This book was released on 2008 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents an improved sampling-based motion planning algorithm, Robust RRT, that is designed specifically for large robotic vehicles and uncertain, dynamic environments. Five main extensions have been made to the original RRT algorithm to improve performance in this type of applications. The closed-loop system is used for state propagation, enabling easy handling of complex, nonlinear, and unstable dynamics. The environment structure is exploited during the sampling process, increasing the probability that a given sample will be reachable. Efficient heuristics are employed in the expansion of the tree and a risk penalty is incorporated to capture uncertainty in the environment and keep the vehicle a safe distance away from hazards. The safety of the vehicle is guaranteed with the assumption of no unexpected changes in the environment, which is achieved by requiring that every trajectory sent for execution ends in a state with the vehicle stopped. Finally, risk evaluation follows a lazy evaluation strategy, allowing the algorithm to spend most of the computation time in the expansion step. The effectiveness of the Robust RRT algorithm for planning in an urban environment is demonstrated through numerous simulated scenarios and real data corresponding to its implementation in MIT's robotic vehicle that competed in the DARPA Urban Challenge.

Book Passivity Based Model Predictive Control for Mobile Vehicle Motion Planning

Download or read book Passivity Based Model Predictive Control for Mobile Vehicle Motion Planning written by Adnan Tahirovic and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimization step is continuously repeated to take into account new local sensor measurements. These ongoing changes make the path generated rather robust in comparison with techniques that fix the entire path prior to task execution. In addition to researchers working in MPC, engineers interested in vehicle path planning for a number of purposes: rescued mission in hazardous environments; humanitarian demining; agriculture; and even planetary exploration, will find this SpringerBrief to be instructive and helpful.

Book Motion Planning for Autonomous Vehicles in Partially Observable Environments

Download or read book Motion Planning for Autonomous Vehicles in Partially Observable Environments written by Taş, Ömer Şahin and published by KIT Scientific Publishing. This book was released on 2023-10-23 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work develops a motion planner that compensates the deficiencies from perception modules by exploiting the reaction capabilities of a vehicle. The work analyzes present uncertainties and defines driving objectives together with constraints that ensure safety. The resulting problem is solved in real-time, in two distinct ways: first, with nonlinear optimization, and secondly, by framing it as a partially observable Markov decision process and approximating the solution with sampling.

Book Path Planning for Autonomous Vehicle

Download or read book Path Planning for Autonomous Vehicle written by Umar Zakir Abdul Hamid and published by BoD – Books on Demand. This book was released on 2019-10-02 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Path Planning (PP) is one of the prerequisites in ensuring safe navigation and manoeuvrability control for driverless vehicles. Due to the dynamic nature of the real world, PP needs to address changing environments and how autonomous vehicles respond to them. This book explores PP in the context of road vehicles, robots, off-road scenarios, multi-robot motion, and unmanned aerial vehicles (UAVs ).

Book Robust MPC Based Motion Planning and Control of Autonomous Ground Vehicles

Download or read book Robust MPC Based Motion Planning and Control of Autonomous Ground Vehicles written by Vivek Bithar and published by . This book was released on 2020 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: The motion planning layer of an autonomous software stack is responsible for the planning of an obstacle avoidance path in all possible scenarios. Emergency scenarios where maneuvers that must be planned are at the limits of vehicle handling are the most challenging path planning problems due to the presence of inherent uncertainties in the modeling, localization/state estimation, and the environment perception.

Book Planning Universal On Road Driving Strategies for Automated Vehicles

Download or read book Planning Universal On Road Driving Strategies for Automated Vehicles written by Steffen Heinrich and published by Springer. This book was released on 2018-04-19 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Steffen Heinrich describes a motion planning system for automated vehicles. The planning method is universally applicable to on-road scenarios and does not depend on a high-level maneuver selection automation for driving strategy guidance. The author presents a planning framework using graphics processing units (GPUs) for task parallelization. A method is introduced that solely uses a small set of rules and heuristics to generate driving strategies. It was possible to show that GPUs serve as an excellent enabler for real-time applications of trajectory planning methods. Like humans, computer-controlled vehicles have to be fully aware of their surroundings. Therefore, a contribution that maximizes scene knowledge through smart vehicle positioning is evaluated. A post-processing method for stochastic trajectory validation supports the search for longer-term trajectories which take ego-motion uncertainty into account. About the Author Steffen Heinrich has a strong background in robotics and artificial intelligence. Since 2009 he has been developing algorithms and software components for self-driving systems in research facilities and for automakers in Germany and the US.

Book Autonomous Road Vehicle Path Planning and Tracking Control

Download or read book Autonomous Road Vehicle Path Planning and Tracking Control written by Levent Guvenc and published by John Wiley & Sons. This book was released on 2021-12-06 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the latest research in path planning and robust path tracking control In Autonomous Road Vehicle Path Planning and Tracking Control, a team of distinguished researchers delivers a practical and insightful exploration of how to design robust path tracking control. The authors include easy to understand concepts that are immediately applicable to the work of practicing control engineers and graduate students working in autonomous driving applications. Controller parameters are presented graphically, and regions of guaranteed performance are simple to visualize and understand. The book discusses the limits of performance, as well as hardware-in-the-loop simulation and experimental results that are implementable in real-time. Concepts of collision and avoidance are explained within the same framework and a strong focus on the robustness of the introduced tracking controllers is maintained throughout. In addition to a continuous treatment of complex planning and control in one relevant application, the Autonomous Road Vehicle Path Planning and Tracking Control includes: A thorough introduction to path planning and robust path tracking control for autonomous road vehicles, as well as a literature review with key papers and recent developments in the area Comprehensive explorations of vehicle, path, and path tracking models, model-in-the-loop simulation models, and hardware-in-the-loop models Practical discussions of path generation and path modeling available in current literature In-depth examinations of collision free path planning and collision avoidance Perfect for advanced undergraduate and graduate students with an interest in autonomous vehicles, Autonomous Road Vehicle Path Planning and Tracking Control is also an indispensable reference for practicing engineers working in autonomous driving technologies and the mobility groups and sections of automotive OEMs.

Book Autonomy and Unmanned Vehicles

Download or read book Autonomy and Unmanned Vehicles written by Somaiyeh MahmoudZadeh and published by Springer. This book was released on 2018-08-06 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses higher–lower level decision autonomy for autonomous vehicles, and discusses the addition of a novel architecture to cover both levels. The proposed framework’s performance and stability are subsequently investigated by employing different meta-heuristic algorithms. The performance of the proposed architecture is shown to be largely independent of the algorithms employed; the use of diverse algorithms (subjected to the real-time performance of the algorithm) does not negatively affect the system’s real-time performance. By analyzing the simulation results, the book demonstrates that the proposed model provides perfect mission timing and task management, while also guaranteeing secure deployment. Although mainly intended as a research work, the book’s review chapters and the new approaches developed here are also suitable for use in courses for advanced undergraduate or graduate students.

Book Massive Parallelism and Sampling Strategies for Robust and Real time Robotic Motion Planning

Download or read book Massive Parallelism and Sampling Strategies for Robust and Real time Robotic Motion Planning written by Brian Ichter and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Motion planning is a fundamental problem in robotics, whereby one seeks to compute a low-cost trajectory from an initial state to a goal region that avoids any obstacles. Sampling-based motion planning algorithms have emerged as an effective paradigm for planning with complex, high-dimensional robotic systems. These algorithms maintain only an implicit representation of the state space, constructed by sampling the free state space and locally connecting samples (under the supervision of a collision checking module). This thesis presents approaches towards enabling real-time and robust sampling-based motion planning with improved sampling strategies and massive parallelism. In the first part of this thesis, we discuss algorithms to leverage massively parallel hardware (GPUs) to accelerate planning and to consider robustness during the planning process. We present an algorithm capable of planning at rates amenable to application within control loops, ∼10 ms. This algorithm uses approximate dynamic programming to explore the state space in a massively-parallel, near-optimal manner. We further present two algorithms capable of real-time, uncertainty-aware and perception-aware motion planning that exhaustively explore the state space via a multiobjective search. This search identifies a Pareto set of promising paths (in terms of cost and robustness) and certifies their robustness via Monte Carlo methods. We demonstrate the effectiveness of these algorithm in numerical simulations and a physical experiment on a quadrotor. In the second part of this thesis, we examine sampling-strategies for probing the state space; traditionally this has been uniform, independent, and identically distributed (i.i.d.) random points. We present a methodology for biasing the sample distribution towards regions of the state space in which the solution trajectory is likely to lie. This distribution is learned via a conditional variational autoencoder, allowing a general methodology, which can be used in combination with any sampling- based planner and can effectively exploit the underlying structure of a planning problem while maintaining the theoretical guarantees of sampling-based approaches. We also analyze the use of deterministic, low-dispersion samples instead of i.i.d. random points. We show that this allows deterministic asymptotic optimality (as opposed to probabilistic), a convergence rate bound in terms of the sample dispersion, reduced computational complexity, and improved practical performance. The technical approaches in this work are applicable to general robotic systems and lay the foundations of robustness and algorithmic speed required for robotic systems operating in the world.

Book Motion planning and feedback control techniques with applications to long tractor trailer vehicles

Download or read book Motion planning and feedback control techniques with applications to long tractor trailer vehicles written by Oskar Ljungqvist and published by Linköping University Electronic Press. This book was released on 2020-04-20 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, improved sensor and hardware technologies as well as new methods and algorithms have made self-driving vehicles a realistic possibility in the near future. At the same time, there has been a growing demand within the transportation sector to increase efficiency and to reduce the environmental impact related to transportation of people and goods. Therefore, many leading automotive and technology companies have turned their attention towards developing advanced driver assistance systems and self-driving vehicles. Autonomous vehicles are expected to have their first big impact in closed environments, such as mines, harbors, loading and offloading sites. In such areas, the legal requirements are less restrictive and the surrounding environment is more controlled and predictable compared to urban areas. Expected positive outcomes include increased productivity and safety, reduced emissions and the possibility to relieve the human from performing complex or dangerous tasks. Within these sites, tractor-trailer vehicles are frequently used for transportation. These vehicles are composed of several interconnected vehicle segments, and are therefore large, complex and unstable while reversing. This thesis addresses the problem of designing efficient motion planning and feedback control techniques for such systems. The contributions of this thesis are within the area of motion planning and feedback control for long tractor-trailer combinations operating at low-speeds in closed and unstructured environments. It includes development of motion planning and feedback control frameworks, structured design tools for guaranteeing closed-loop stability and experimental validation of the proposed solutions through simulations, lab and field experiments. Even though the primary application in this work is tractor-trailer vehicles, many of the proposed approaches can with some adjustments also be used for other systems, such as drones and ships. The developed sampling-based motion planning algorithms are based upon the probabilistic closed-loop rapidly exploring random tree (CL-RRT) algorithm and the deterministic lattice-based motion planning algorithm. It is also proposed to use numerical optimal control offline for precomputing libraries of optimized maneuvers as well as during online planning in the form of a warm-started optimization step. To follow the motion plan, several predictive path-following control approaches are proposed with different computational complexity and performance. Common for these approaches are that they use a path-following error model of the vehicle for future predictions and are tailored to operate in series with a motion planner that computes feasible paths. The design strategies for the path-following approaches include linear quadratic (LQ) control and several advanced model predictive control (MPC) techniques to account for physical and sensing limitations. To strengthen the practical value of the developed techniques, several of the proposed approaches have been implemented and successfully demonstrated in field experiments on a full-scale test platform. To estimate the vehicle states needed for control, a novel nonlinear observer is evaluated on the full-scale test vehicle. It is designed to only utilize information from sensors that are mounted on the tractor, making the system independent of any sensor mounted on the trailer. Under de senaste årtiondena har utvecklingen av sensor- och hårdvaruteknik gått i en snabb takt, samtidigt som nya metoder och algoritmer har introducerats. Samtidigt ställs det stora krav på transportsektorn att öka effektiviteten och minska miljöpåverkan vid transporter av både människor och varor. Som en följd av detta har många ledande fordonstillverkare och teknikföretag börjat satsat på att utveckla avancerade förarstödsystem och självkörande fordon. Även forskningen inom autonoma fordon har under de senaste årtiondena kraftig ökat då en rad tekniska problem återstår att lösas. Förarlösa fordon förväntas få sitt första stora genombrott i slutna miljöer, såsom gruvor, hamnar, lastnings- och lossningsplatser. I sådana områden är lagstiftningen mindre hård jämfört med stadsområden och omgivningen är mer kontrollerad och förutsägbar. Några av de förväntade positiva effekterna är ökad produktivitet och säkerhet, minskade utsläpp och möjligheten att avlasta människor från att utföra svåra eller farliga uppgifter. Inom dessa platser används ofta lastbilar med olika släpvagnskombinationer för att transportera material. En sådan fordonskombination är uppbyggd av flera ihopkopplade moduler och är således utmanande att backa då systemet är instabilt. Detta gör det svårt att utforma ramverk för att styra sådana system vid exempelvis autonom backning. Självkörande fordon är mycket komplexa system som består av en rad olika komponenter vilka är designade för att lösa separata delproblem. Två viktiga komponenter i ett självkörande fordon är dels rörelseplaneraren som har i uppgift att planera hur fordonet ska röra sig för att på ett säkert sätt nå ett överordnat mål, och dels den banföljande regulatorn vars uppgift är att se till att den planerade manövern faktiskt utförs i praktiken trots störningar och modellfel. I denna avhandling presenteras flera olika algoritmer för att planera och utföra komplexa manövrar för lastbilar med olika typer av släpvagnskombinationer. De presenterade algoritmerna är avsedda att användas som avancerade förarstödsystem eller som komponenter i ett helt autonomt system. Även om den primära applikationen i denna avhandling är lastbilar med släp, kan många av de förslagna algoritmerna även användas för en rad andra system, så som drönare och båtar. Experimentell validering är viktigt för att motivera att en föreslagen algoritm är användbar i praktiken. I denna avhandling har flera av de föreslagna planerings- och reglerstrategierna implementerats på en småskalig testplattform och utvärderats i en kontrollerad labbmiljö. Utöver detta har även flera av de föreslagna ramverken implementerats och utvärderats i fältexperiment på en fullskalig test-plattform som har utvecklats i samarbete med Scania CV. Här utvärderas även en ny metod för att skatta släpvagnens beteende genom att endast utnyttja information från sensorer monterade på lastbilen, vilket gör det föreslagna ramverket oberoende av sensorer monterade på släpvagnen.

Book Application of Sampling Based Motion Planning Algorithms in Autonomous Vehicle Navigation

Download or read book Application of Sampling Based Motion Planning Algorithms in Autonomous Vehicle Navigation written by Weria Khaksar and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: With the development of the autonomous driving technology, the autonomous vehicle has become one of the key issues for supporting our daily life and economical activities. One of the challenging research areas in autonomous vehicle is the development of an intelligent motion planner, which is able to guide the vehicle in dynamic changing environments. In this chapter, a novel sampling-based navigation architecture is introduced, which employs the optimal properties of RRT* planner and the low running time property of low-dispersion sampling-based algorithms. Furthermore, a novel segmentation method is proposed, which divides the sampling domain into valid and tabu segments. The resulted navigation architecture is able to guide the autonomous vehicle in complex situations such as takeover or crowded environments. The performance of the proposed method is tested through simulation in different scenarios and also by comparing the performances of RRT and RRT* algorithms. The proposed method provides near-optimal solutions with smaller trees and in lower running time.

Book Robust Motion Planning in the Presence of Uncertainties Using a Maneuver Automaton

Download or read book Robust Motion Planning in the Presence of Uncertainties Using a Maneuver Automaton written by Julide Julie Topsakal and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the basic problems which have to be solved by Unmanned Automated Vehicles (UAV) involves the computation of a motion plan that would enable the system to reach a target given a set of initial conditions in presence of uncertainties on the vehicle dynamics and in the environment. Recent research efforts in this area have relied on deterministic models. To address the problem of inevitable uncertainties, a low-level control layer is typically used to ensure proper robust trajectory tracking. Such decision-tracking algorithms correct model disturbances a posteriori, while the whole movement planning is done in a purely deterministic fashion. We argue that the decision making process that takes place during movement planning, as performed by experienced human pilots, is not a purely deterministic operation, but is heavily influenced by the presence of uncertainties and reflects a risk-management policy. This research aims at addressing these uncertainties and developing an optimal control strategy that would account for the presence of system uncertainties. The underlying description of UAV trajectories will be based on a modeling language, the Maneuver Automaton, that takes into full account the vehicle dynamics, and hence guarantees flyable and trackable paths and results in a discretized solution space. Two optimal control problems, a nominal problem omitting uncertainties and a robust problem addressing the presence of uncertainties, will be defined and compared throughout this work. The incorporation of uncertainties, will ensure that the generated motion planning policies will maximize the probability to meet mission goals, weighing risks against performance.

Book Generalized Sampling based Feedback Motion Planners

Download or read book Generalized Sampling based Feedback Motion Planners written by Sandip Kumar and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The motion planning problem can be formulated as a Markov decision process (MDP), if the uncertainties in the robot motion and environments can be modeled probabilistically. The complexity of solving these MDPs grow exponentially as the dimension of the problem increases and hence, it is nearly impossible to solve the problem even without constraints. Using hierarchical methods, these MDPs can be transformed into a semi-Markov decision process (SMDP) which only needs to be solved at certain landmark states. In the deterministic robotics motion planning community, sampling based algorithms like probabilistic roadmaps (PRM) and rapidly exploring random trees (RRTs) have been successful in solving very high dimensional deterministic problem. However they are not robust to system with uncertainties in the system dynamics and hence, one of the primary objective of this work is to generalize PRM/RRT to solve motion planning with uncertainty. We first present generalizations of randomized sampling based algorithms PRM and RRT, to incorporate the process uncertainty, and obstacle location uncertainty, termed as "generalized PRM" (GPRM) and "generalized RRT" (GRRT). The controllers used at the lower level of these planners are feedback controllers which ensure convergence of trajectories while mitigating the effects of process uncertainty. The results indicate that the algorithms solve the motion planning problem for a single agent in continuous state/control spaces in the presence of process uncertainty, and constraints such as obstacles and other state/input constraints. Secondly, a novel adaptive sampling technique, termed as "adaptive GPRM" (AGPRM), is proposed for these generalized planners to increase the efficiency and overall success probability of these planners. It was implemented on high-dimensional robot n-link manipulators, with up to 8 links, i.e. in a 16-dimensional state-space. The results demonstrate the ability of the proposed algorithm to handle the motion planning problem for highly non-linear systems in very high-dimensional state space. Finally, a solution methodology, termed the "multi-agent AGPRM" (MAGPRM), is proposed to solve the multi-agent motion planning problem under uncertainty. The technique uses a existing solution technique to the multiple traveling salesman problem (MTSP) in conjunction with GPRM. For real-time implementation, an "inter-agent collision detection and avoidance" module was designed which ensures that no two agents collide at any time-step. Algorithm was tested on teams of homogeneous and heterogeneous agents in cluttered obstacle space and the algorithm demonstrate the ability to handle such problems in continuous state/control spaces in presence of process uncertainty.

Book Planning Algorithms

    Book Details:
  • Author : Steven M. LaValle
  • Publisher : Cambridge University Press
  • Release : 2006-05-29
  • ISBN : 9780521862059
  • Pages : 844 pages

Download or read book Planning Algorithms written by Steven M. LaValle and published by Cambridge University Press. This book was released on 2006-05-29 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.

Book Robust Hybrid Control for Autonomous Vehicle Motion Planning

Download or read book Robust Hybrid Control for Autonomous Vehicle Motion Planning written by Emilio Frazzoli and published by . This book was released on 2001 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.) In the second part of the dissertation, a randomized algorithm is proposed for real-time motion planning in a dynamic environment. By employing the optimal control solution in a free space developed for the maneuver automaton (or for any other general system), we present a motion planning algorithm with probabilistic convergence and performance guarantees, and hard safety guarantees, even in the face of finite computation times. The proposed methodologies are applicable to a very large class of autonomous vehicles: throughout the dissertation, examples, simulation and experimental results are presented and discussed, involving a variety of mechanical systems, ranging from simple academic examples and laboratory setups, to detailed models of small autonomous helicopters.