EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Robust Robotic Manipulation for Effective Multi contact and Safe Physical Interactions

Download or read book Robust Robotic Manipulation for Effective Multi contact and Safe Physical Interactions written by Mikael Daniel Gabriel Jorda and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Robots are complex systems, at the intersection of numerous engineering domains. The goal of many researchers is to build a fully capable and safe robot that can work and assist humans in their daily lives. To reach these goals, the complex robotic systems must be separated in different subsystem components such as perception, world understanding, navigation, manipulation, interfaces and interaction. These subsystems need to be safe and robust in order to synergistically work together. In particular, a reliable and general robot manipulation framework for free space and contact tasks is required for robots to become useful in new environments. In this thesis, we aim at developing a theoretical and practical foundation for safe and robust robotic manipulation, involving multiple simultaneous physical interactions with complex and unknown environments. We start with the well known operational space control framework: a task-oriented control methodology that enables task dynamic decoupling and hierarchical control structures. After reviewing the operational space control theory for controlling a robot task and posture, we present a series of practical considerations for its robust implementation on real hardware platforms. The integration in this framework of constraints such as joint limits and obstacles is then discussed, and a method to react safely to unexpected contacts on the robot structure during operations is proposed. These constraints are handled as control objectives in the control hierarchy, using artificial potential fields to generate repulsive forces and dynamically consistent projections to ensure an independent control of the constraints and task objectives. This systematic treatment of constraints at the control level enables a robust, autonomous execution of complex tasks in changing environments. This framework was extended over the years to consider underactuated robots in arbitrary contact situations. This resulted in a comprehensive formulation to the problem of controlling a high-dimensional robotic system involving complex tasks subject to various constraints, obstacles, balance and multiple contacts. Contacts are essential for robot manipulation. On the one hand, parts of the robot tasks involve physical interactions that need to be controlled precisely. On the other hand, further contacts are required on underactuated systems in order to enable the robot motion and guarantee its balance. In addition, contacts between the robot and the environment are subject to geometric and friction constraints that need to be addressed by the control framework. Therefore, in this thesis, the operational space whole-body control framework is completed to enable a systematic treatment of multi-contact scenarios. A virtual linkage model separates the contact forces into three sets. The resultant forces allow the robot to compensate for its underactuation. The task contact forces are controlled to their desired values. The internal forces provide a way to satisfy geometric and friction constraints. A method using barrier functions is proposed to specify a set of internal forces that ensure the robot's balance and contact stability. Even when the desired contact forces are correctly specified, their control remains a challenge. Indeed, the fast and discontinuous closed loop dynamics of stiff physical interactions leads to instabilities in robot force control. Therefore, we adapt a time domain passivity approach to guarantee the stability of explicit force controllers. This results in an increased robustness and safety for robotic systems in multiple contact scenarios. To develop effective interfaces for human-robot collaboration, we also study haptic robot teleoperation. Haptic devices provide an intuitive interface to remotely control robots and combine the high-level cognitive autonomy of humans with the autonomous manipulation capabilities of robots. The goal of haptic robot control is to maximize the transparency between the human operator and the robot environment. It means that the robot environment should be felt by the human as if they were directly interacting with it, and the human commands should be executed precisely by the robot. Transparency is very challenging to achieve when communication delays are present in the system, which occurs systematically when there is a significant physical distance between the controlled robot and its human operator. To address this challenge, we propose a new paradigm for performing haptic-robot control. Instead of relying on a global feedback loop, the new method establishes two autonomous controllers acting on the robot and the haptic device, interfaced via a dual-proxy model. The dual-proxy is a bridge between the local controllers. It generates appropriate motion and force inputs that are consistent with the task physical interactions. The model relies on the exchange of position, contact, and environment geometry information, avoiding the limitations caused by a direct force feedback between robot and haptic device in conventional teleoperation. To estimate the environment contact geometry in real-time, we also design a new perception algorithm that enables a fully autonomous implementation of the dual-proxy model. The performance of all the control methods presented in this thesis are evaluated via simulations and hardware experimental validation. Combining these methods together results in a robust, safe and generic manipulation control framework for complex robots in interaction with uncertain environments. Such framework is one of the key components for a complete and fully capable robotic system.

Book Robot Physical Interaction through the combination of Vision  Tactile and Force Feedback

Download or read book Robot Physical Interaction through the combination of Vision Tactile and Force Feedback written by Mario Prats and published by Springer. This book was released on 2012-10-05 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robot manipulation is a great challenge; it encompasses versatility -adaptation to different situations-, autonomy -independent robot operation-, and dependability -for success under modeling or sensing errors. A complete manipulation task involves, first, a suitable grasp or contact configuration, and the subsequent motion required by the task. This monograph presents a unified framework by introducing task-related aspects into the knowledge-based grasp concept, leading to task-oriented grasps. Similarly, grasp-related issues are also considered during the execution of a task, leading to grasp-oriented tasks which is called framework for physical interaction (FPI). The book presents the theoretical framework for the versatile specification of physical interaction tasks, as well as the problem of autonomous planning of these tasks. A further focus is on sensor-based dependable execution combining three different types of sensors: force, vision and tactile. The FPI approach allows to perform a wide range of robot manipulation tasks. All contributions are validated with several experiments using different real robots placed on household environments; for instance, a high-DoF humanoid robot can successfully operate unmodeled mechanisms with widely varying structure in a general way with natural motions. This research was recipient of the European Georges Giralt Award and the Robotdalen Scientific Award Honorary Mention.

Book Dynamics And Robust Control Of Robot environment Interaction

Download or read book Dynamics And Robust Control Of Robot environment Interaction written by Miomir Vukobratovic and published by World Scientific. This book was released on 2009-03-06 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most attractive problem in robot control, dealing with the direct interaction between a robot and a dynamic environment, including the human-robot physical interaction. It provides comprehensive theoretical and experimental coverage of interaction control problems, starting from the mathematical modeling of robots interacting with complex dynamic environments, and proceeding to various concepts for interaction control design and implementation algorithms at different control layers. Focusing on the learning principle, it also shows the application of new and advanced learning algorithms for robotic contact tasks.The ultimate aim is to strike a good balance between the necessary theoretical framework and practical aspects of interactive robots.

Book Multi surface Contact Interactions in Articulated Rigid body Systems

Download or read book Multi surface Contact Interactions in Articulated Rigid body Systems written by Shameek Prodosh Ganguly and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced robotic manipulation holds the key to extending human reach to new frontiers, and improving the quality of human life. Modern techniques of programming robotic manipulation strategies leverage force feedback, task-oriented control and expert task demonstration through visual-haptic interfaces. Developing robust manipulation strategies requires accurate and efficient models for simultaneous contacts between robots and other parts of their workspace. Such contact models are commonly embedded into compliant manipulation strategies, and into the simulation tools used to design them. One of the key challenges in modeling simultaneous multi-contact interactions between articulated bodies lies in compactly describing the dynamics of the system with the contact constraints. The classical approach of resolving multi-contact interactions for articulated bodies is to solve a collection of unilateral contact constraints and bilateral joint constraints on free rigid bodies. However, this approach is computationally inefficient, and produces inaccurate robot motion, that needs ad-hoc post-correction. Moreover, smooth body geometry is typically discretized into polygon soups, resulting in a redundant description of contact constraints, particularly when contact occurs across a line, curve, or a surface patch, such as a coffee mug placed flat against a table. Discretizing the smooth geometric surfaces of contact into a set of contact points not only results in nonphysical jittery motion and poor simulator performance, but also results in an incorrect estimate of the contact force exerted by the robot on its environment, an essential sensory estimate for simulation of compliant manipulation strategies. There are two main goals that I set out to achieve in this work: (i) improve the computational speed of multi-contact resolution for articulated body systems without compromising physical correctness, and (ii) develop a theoretical understanding of the contact-constrained dynamics of such systems, that generalizes to non-polyhedral body geometry. To regulate the complexity of achieving the above goals, an overarching assumption in this work is that the system is composed of rigid articulated bodies, where rigidity is defined to imply that neither deformation nor interpenetration is admissible between the bodies in contact. The first contribution of this thesis towards the above goals is to develop and experimentally validate a new approach for multi-contact modeling in robotic systems. This Contact Space Resolution Model (CSR model) model addresses the problem of simultaneously enforcing multiple joint and contact constraints in articulated rigid body (ARB) systems. Building on the theory of operational space manipulator dynamics and control, it is shown that through the proper choice of a set of contact-space coordinates, the instantaneous dynamics of the ARB system can be partitioned into two dynamically-consistent complementary sub-spaces - the contact space and the null space. The projected dynamics in the contact space is governed by the effective mass and effective rotational inertia of the two bodies at the contact points, whereas the projected dynamics in the null-space is undisturbed by the contact forces. This latter property is a generalization of the principle of momentum conservation to ARB systems. A series of single- and two-point collision experiments conducted on free-hanging multi-link pendulums demonstrate that the CSR Model accurately predicts the post-collision system state. Moreover, for the first time, it is shown experimentally that the projection of system dynamics into the mutually complementary contact space and null space is a physically verifiable phenomenon. To address the problem of constraint over-redundancy introduced by the assumption that contact occurs across a finite set of points, a new Shared Contact Frame (SC-Frame) theory is developed. The SC-Frame theory extends the CSR model by a choice of contact-space coordinates that corresponds to the infinitesimal relative motion between two links in contact at a chosen frame. For a particular choice of frame, the possible obstructive contact forces (or wrenches in general) lie within a convex cone, which is normal to the contact-space acceleration. Frictional force and moment act in a symmetric, convex subset of the wrench space, as per Coulomb's dry friction model. An efficient SC-Frame Planar-Contact algorithm is developed for the particular case where the contact configuration between any two links is a set of co-planar contact patches. In this algorithm, the location of the SC-Frame is resolved simultaneously with the contact wrench, under the assumption that the frame lies at the center of pressure of the contact pressure distribution. As a result, the geometric location of the resolved frame origin is physically significant, and naturally captures impending transitions in the contact state between the bodies. Simulation results are presented with bodies modeled geometrically as unions of convex primitives. It is demonstrated that the method results in smooth motion, qualitatively correct contact state transitions, reliable contact force estimates and a significant improvement in computational speed over conventional multi-point contact solvers. Through the course of this research endeavour, I also worked on several other applied robotics projects ranging from the development of the underwater humanoid robot, Ocean One, to the conceptual prototyping of an underground drilling robot for gold mining. Due to their tangential nature to the subject at hand, these projects are not discussed in this thesis, but may be found in additional publications.

Book Advances in Robot Kinematics 2022

Download or read book Advances in Robot Kinematics 2022 written by Oscar Altuzarra and published by Springer Nature. This book was released on 2022-06-17 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on the latest scientific achievements on robot kinematics provided by the prominent researchers participating in the 18th International Symposium on Advances in Robot Kinematics ARK2022, organized in the University of the Basque Country, Bilbao, Spain. It is of interest to researchers wanting to know more about the latest topics and methods in the fields of the kinematics, control and design of robotic systems. The book brings together 53 peer-reviewed papers. These cover the full range of robotic systems, including serial, parallel, flexible mechanisms, and cable-driven manipulators, and tackle problems such as: kinematic analysis of robots, robot modelling and simulation, theories and methods in kinematics, singularity analysis, kinematic problems in parallel robots, redundant robots, cable robots, kinematics in biological systems, flexible parallel manipulators, humanoid robots and humanoid subsystems.

Book Dynamics and Control of Robotic Manipulators with Contact and Friction

Download or read book Dynamics and Control of Robotic Manipulators with Contact and Friction written by Shiping Liu and published by John Wiley & Sons. This book was released on 2019-02-11 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the friction, contact and impact on robot control and force feedback mechanism Dynamics and Control of Robotic Manipulators with Contact and Friction offers an authoritative guide to the basic principles of robot dynamics and control with a focus on contact and friction. The authors discuss problems in interaction between human and real or virtual robot where dynamics with friction and contact are relevant. The book fills a void in the literature with a need for a text that considers the contact and friction generated in robot joints during their movements. Designed as a practical resource, the text provides the information needed for task planning in view of contact, impact and friction for the designer of a robot control system for high accuracy and long durability. The authors include a review of the most up-to-date advancements in robot dynamics and control. It contains a comprehensive resource to the effective design and fabrication of robot systems and components for engineering and scientific purposes. This important guide: Offers a comprehensive reference with systematic treatment and a unified framework Includes simulation and experiments used in dynamics and control of robot considering contact, impact and friction Discusses the most current tribology methodology used to treat the multiple–scale effects Contains valuable descriptions of experiments and software used Presents illustrative accounts on the methods employed to handle friction in the closed loop, including the principles, implementation, application scope, merits and demerits Offers a cohesive treatment that covers tribology and multi-scales, multi-physics and nonlinear stochastic dynamics control Written for graduate students of robotics, mechatronics, mechanical engineering, tracking control and practicing professionals and industrial researchers, Dynamics and Control of Robotic Manipulators with Contact and Friction offers a review to effective design and fabrication of stable and durable robot system and components.

Book Robust Physics based Robotic Manipulation in Real time

Download or read book Robust Physics based Robotic Manipulation in Real time written by Wisdom Chukwunwike Agboh and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Whole Body Control for Multi Contact Balancing of Humanoid Robots

Download or read book Whole Body Control for Multi Contact Balancing of Humanoid Robots written by Bernd Henze and published by Springer Nature. This book was released on 2021-11-03 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at providing algorithms for balance control of legged, torque-controlled humanoid robots. A humanoid robot normally uses the feet for locomotion. This paradigm is extended by addressing the challenge of multi-contact balancing, which allows a humanoid robot to exploit an arbitrary number of contacts for support. Using multiple contacts increases the size of the support polygon, which in turn leads to an increased robustness of the stance and to an increased kinematic workspace of the robot. Both are important features for facilitating a transition of humanoid robots from research laboratories to real-world applications, where they are confronted with multiple challenging scenarios, such as climbing stairs and ladders, traversing debris, handling heavy loads, or working in confined spaces. The distribution of forces and torques among the multiple contacts is a challenging aspect of the problem, which arises from the closed kinematic chain given by the robot and its environment.

Book Human Robot Interaction

Download or read book Human Robot Interaction written by Paolo Barattini and published by CRC Press. This book was released on 2019-04-12 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human-Robot Interaction: Safety, Standardization, and Benchmarking provides a comprehensive introduction to the new scenarios emerging where humans and robots interact in various environments and applications on a daily basis. The focus is on the current status and foreseeable implications of robot safety, approaching these issues from the standardization and benchmarking perspectives. Featuring contributions from leading experts, the book presents state-of-the-art research, and includes real-world applications and use cases. It explores the key leading sectors—robotics, service robotics, and medical robotics—and elaborates on the safety approaches that are being developed for effective human-robot interaction, including physical robot-human contacts, collaboration in task execution, workspace sharing, human-aware motion planning, and exploring the landscape of relevant standards and guidelines. Features Presenting a comprehensive introduction to human-robot interaction in a number of domains, including industrial robotics, medical robotics, and service robotics Focusing on robot safety standards and benchmarking Providing insight into current developments in international standards Featuring contributions from leading experts, actively pursuing new robot development

Book Designing Robot Behavior in Human Robot Interactions

Download or read book Designing Robot Behavior in Human Robot Interactions written by Changliu Liu and published by CRC Press. This book was released on 2021-04 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the authors provide a unified analytical framework for various human-robot systems, which involves peer to peer interactions or hierarchical interactions. The following topics are discussed: real-time motion planning, robot skill learning, mechanism design for conflict resolution, closed-loop analysis and safety verification.

Book Introduction to Autonomous Manipulation

Download or read book Introduction to Autonomous Manipulation written by Giacomo Marani and published by Springer. This book was released on 2014-03-26 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Autonomous manipulation” is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics. This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environments. After presenting the theoretical foundations for kinematic and dynamic modelling as well as task-priority based kinematic control of multi-body systems, the work is focused on one of the most advanced underwater vehicle-manipulator system, SAUVIM (Semi-Autonomous Underwater Vehicle for Intervention Missions). Solutions to the problem of target identification and localization are proposed, a number of significant case studies are discussed and practical examples an d experimental/simulation results are presented. The book may inspire the robot research community to further investigate critical issues in autonomous manipulation and to develop robot systems that can profoundly impact our society for the better.

Book Robot Force Control

Download or read book Robot Force Control written by Bruno Siciliano and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.

Book Model Based Control of Flying Robots for Robust Interaction Under Wind Influence

Download or read book Model Based Control of Flying Robots for Robust Interaction Under Wind Influence written by Teodor Tomić and published by Springer Nature. This book was released on 2022-10-07 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the topic of autonomous flying robots physically interacting with the environment under the influence of wind. It aims to make aerial robots aware of the disturbance, interaction, and faults acting on them. This requires reasoning about the external wrench (force and torque) acting on the robot and distinguishing between wind, interactions, and collisions. The book takes a model-based approach and covers a systematic approach to parameter identification for flying robots. The book aims to provide a wind speed estimate independent of the external wrench, including estimating the wind speed using motor power measurements. Aerodynamics modeling is approached in a data-driven fashion, using ground-truth measurements from a 4D wind tunnel. Finally, the book bridges the gap between trajectory tracking and interaction control, to allow physical interaction under wind influence. Theoretical results are accompanied by extensive simulation and experimental results.

Book Mapping Human Sensory Motor Skills for Manipulation onto the Design and Control of Robots

Download or read book Mapping Human Sensory Motor Skills for Manipulation onto the Design and Control of Robots written by Matteo Bianchi and published by Frontiers Media SA. This book was released on 2019-03-25 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Humans are endowed with extraordinary sensory-motor capabilities that enable a successful interaction with and exploration of the environment, as is the case of human manipulation. Understanding and modeling these capabilities represents an important topic not only for neuroscience but also for robotics in a mutual inspiration, both to inform the design and control of artificial systems and, at the same time, to increase knowledge on the biological side. Within this context, synergies -- i.e., goal-directed actions that constrain multi DOFs of the human body and can be defined at the kinematic, muscular, neural level -- have gained increasing attention as a general simplified approach to shape the development of simple and effective artificial devices. The execution of such purposeful sensory-motor primitives on the biological side leverages on the interplay of the sensory-motor control at central and peripheral level, and the interaction of the human body with the external world. This interaction is particularly important considering the new concept of robotic soft manipulation, i.e. soft, adaptable yet robust robotic hands that can deform with the external environment to multiply their grasping and manipulation capabilities. Under this regard, a preeminent role is reserved to touch, being that skin isour primary organ to shape our knowledge of the external world and, hence, to modify it, in interaction with the efferent parts. This Research Topic reports results on the mutual inspiration between neuroscience and robotics, and on how it is possible to translate neuroscientific findings on human manipulation into engineering guidelines for simplified systems able to take full advantage from the interaction and hence exploitation of environmental constraints for task accomplishment and knowledge acquisition.

Book Informative Touch for Intelligent Soft Robots

Download or read book Informative Touch for Intelligent Soft Robots written by Benjamin Shih and published by . This book was released on 2020 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: As robots grow increasingly prevalent in real-world environments, sensory systems capable of sensing complex deformations and environmental interactions are needed for robust control. Soft robotics has emerged as a field of study that seeks to replace rigid components in traditional robots with materials that are compliant. It has garnered interest for real-world applications due to intrinsic safety embedded at the material level, deformable materials capable of shape and behavioral changes, and conformable physical contact for manipulation.-Yet, with the introduction of soft and stretchable materials to robotic systems comes a myriad of challenges for sensor integration, including multi-modal sensing capable of stretching, embedment of high-resolution but large-area sensor arrays, and sensor fusion with an increasing volume of data. This dissertation describes the design, fabrication, and data processing of soft, tactile sensor skins, with the ultimate goal of enhancing future collaborative robots that will work alongside and physically interact with people with a human-like sense of touch. This thesis focuses on how the integration of soft sensor skins and machine learning enables soft robots to perceive physical interaction for complex haptic tasks. Part 1 on Soft Sensors (Chapters 2, 3, and 4) presents the design and fabrication of various types of soft strain sensors, using compliant materials such as silicones and polymers. Fabrication methods include soft lithography and 3D printing. Performance of the sensors are characterized and modeled. Part 2 on Soft Robot Perception (Chapters 5 and 6) describes how machine learning can be used to augment the performance of soft sensors and actuators. The method demonstrates how recurrent neural networks can be used for graceful degradation and learned perception of external contacts and forces despite not having a priori information about the individual sensors. Part 3 on Social Touch for Physical Human-Robot Interaction (Chapters 7 and 8) analyzes the use of the liquid metal sensors as robotic skins for the classification of affective (social) touch and builds towards the development of a framework for representing physical contact, for use at the human-robot interaction layer of abstraction. In recent years, the concept of soft-bodied robots has rapidly grown in popularity. Researchers have developed many interesting forms of actuation that more closely mimic the functionality and capabilities found in nature. The next step for the field is to develop biologically-inspired tactile sensing for soft-bodied robots that can safely interact with and explore their environments. In the short term, the field can focus on deployable, high-resolution sensor skins, algorithms for processing the dense sensor information, and reliable feedback control for soft robots. Building upon the fundamental work presented in this dissertation, the future consists of robots that can touch and feel with the sensitivity and perception of natural systems.

Book Aerial Manipulation

Download or read book Aerial Manipulation written by Matko Orsag and published by Springer. This book was released on 2017-09-19 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a thorough treatment of the rapidly growing area of aerial manipulation. It details all the design steps required for the modeling and control of unmanned aerial vehicles (UAV) equipped with robotic manipulators. Starting with the physical basics of rigid-body kinematics, the book gives an in-depth presentation of local and global coordinates, together with the representation of orientation and motion in fixed- and moving-coordinate systems. Coverage of the kinematics and dynamics of unmanned aerial vehicles is developed in a succession of popular UAV configurations for multirotor systems. Such an arrangement, supported by frequent examples and end-of-chapter exercises, leads the reader from simple to more complex UAV configurations. Propulsion-system aerodynamics, essential in UAV design, is analyzed through blade-element and momentum theories, analysis which is followed by a description of drag and ground-aerodynamic effects. The central part of the book is dedicated to aerial-manipulator kinematics, dynamics, and control. Based on foundations laid in the opening chapters, this portion of the book is a structured presentation of Newton–Euler dynamic modeling that results in forward and backward equations in both fixed- and moving-coordinate systems. The Lagrange–Euler approach is applied to expand the model further, providing formalisms to model the variable moment of inertia later used to analyze the dynamics of aerial manipulators in contact with the environment. Using knowledge from sensor data, insights are presented into the ways in which linear, robust, and adaptive control techniques can be applied in aerial manipulation so as to tackle the real-world problems faced by scholars and engineers in the design and implementation of aerial robotics systems. The book is completed by path and trajectory planning with vision-based examples for tracking and manipulation.

Book Flexible Robotics

Download or read book Flexible Robotics written by Mathieu Grossard and published by John Wiley & Sons. This book was released on 2013-07-22 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data. Contents 1. Design of Integrated Flexible Structures for Micromanipulation, Mathieu Grossard, Mehdi Boukallel, Stéphane Régnier and Nicolas Chaillet. 2. Flexible Structures’ Representation and Notable Properties in Control, Mathieu Grossard, Arnaud Hubert, Stéphane Régnier and Nicolas Chaillet. 3. Structured Energy Approach for the Modeling of Flexible Structures, Nandish R. Calchand, Arnaud Hubert, Yann Le Gorrec and Hector Ramirez Estay. 4. Open-Loop Control Approaches to Compliant Micromanipulators, Yassine Haddab, Vincent Chalvet and Micky Rakotondrabe. 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers, Javier Martin Amezaga and Mathieu Grossard. 6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation, Mehdi Boukallel, Hanna Yousef, Christelle Godin and Caroline Coutier. 7. Flexures for High-Precision Manipulation Robots, Reymond Clavel, Simon Henein and Murielle Richard. 8. Modeling and Motion Control of Serial Robots with Flexible Joints, Maria Makarov and Mathieu Grossard. 9. Dynamic Modeling of Deformable Manipulators, Frédéric Boyer and Ayman Belkhiri. 10. Robust Control of Robotic Manipulators with Structural Flexibilities, Houssem Halalchi, Loïc Cuvillon, Guillaume Mercère and Edouard Laroche. About the Authors Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France. Nicolas Chaillet, FEMTO-ST, Besançon, France. Stéphane Régnier, ISIR, UPMC, Paris, France.