Download or read book Assessment and Future Directions of Nonlinear Model Predictive Control written by Rolf Findeisen and published by Springer. This book was released on 2007-09-08 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thepastthree decadeshaveseenrapiddevelopmentin the areaofmodelpred- tive control with respect to both theoretical and application aspects. Over these 30 years, model predictive control for linear systems has been widely applied, especially in the area of process control. However, today’s applications often require driving the process over a wide region and close to the boundaries of - erability, while satisfying constraints and achieving near-optimal performance. Consequently, the application of linear control methods does not always lead to satisfactory performance, and here nonlinear methods must be employed. This is one of the reasons why nonlinear model predictive control (NMPC) has - joyed signi?cant attention over the past years,with a number of recent advances on both the theoretical and application frontier. Additionally, the widespread availability and steadily increasing power of today’s computers, as well as the development of specially tailored numerical solution methods for NMPC, bring thepracticalapplicabilityofNMPCwithinreachevenforveryfastsystems.This has led to a series of new, exciting developments, along with new challenges in the area of NMPC.
Download or read book Robust and Adaptive Model Predictive Control of Nonlinear Systems written by Martin Guay and published by IET. This book was released on 2015-11-13 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a novel approach to adaptive control and provides a sound theoretical background to designing robust adaptive control systems with guaranteed transient performance. It focuses on the more typical role of adaptation as a means of coping with uncertainties in the system model.
Download or read book Process Control written by Jean-Pierre Corriou and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 763 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference book can be read at different levels, making it a powerful source of information. It presents most of the aspects of control that can help anyone to have a synthetic view of control theory and possible applications, especially concerning process engineering.
Download or read book Model Predictive Control in the Process Industry written by Eduardo F. Camacho and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors.
Download or read book Model Predictive Control written by Basil Kouvaritakis and published by Springer. This book was released on 2015-12-01 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.
Download or read book Minimax Approaches to Robust Model Predictive Control written by Johan Löfberg and published by Linköping University Electronic Press. This book was released on 2003-04-11 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Controlling a system with control and state constraints is one of the most important problems in control theory, but also one of the most challenging. Another important but just as demanding topic is robustness against uncertainties in a controlled system. One of the most successful approaches, both in theory and practice, to control constrained systems is model predictive control (MPC). The basic idea in MPC is to repeatedly solve optimization problems on-line to find an optimal input to the controlled system. In recent years, much effort has been spent to incorporate the robustness problem into this framework. The main part of the thesis revolves around minimax formulations of MPC for uncertain constrained linear discrete-time systems. A minimax strategy in MPC means that worst-case performance with respect to uncertainties is optimized. Unfortunately, many minimax MPC formulations yield intractable optimization problems with exponential complexity. Minimax algorithms for a number of uncertainty models are derived in the thesis. These include systems with bounded external additive disturbances, systems with uncertain gain, and systems described with linear fractional transformations. The central theme in the different algorithms is semidefinite relaxations. This means that the minimax problems are written as uncertain semidefinite programs, and then conservatively approximated using robust optimization theory. The result is an optimization problem with polynomial complexity. The use of semidefinite relaxations enables a framework that allows extensions of the basic algorithms, such as joint minimax control and estimation, and approx- imation of closed-loop minimax MPC using a convex programming framework. Additional topics include development of an efficient optimization algorithm to solve the resulting semidefinite programs and connections between deterministic minimax MPC and stochastic risk-sensitive control. The remaining part of the thesis is devoted to stability issues in MPC for continuous-time nonlinear unconstrained systems. While stability of MPC for un-constrained linear systems essentially is solved with the linear quadratic controller, no such simple solution exists in the nonlinear case. It is shown how tools from modern nonlinear control theory can be used to synthesize finite horizon MPC controllers with guaranteed stability, and more importantly, how some of the tech- nical assumptions in the literature can be dispensed with by using a slightly more complex controller.
Download or read book Compressor Surge and Rotating Stall written by Jan Tommy Gravdahl and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology impacts all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies . . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Operating plant as close as possible to constraint boundaries so often brings economic benefits in industrial process control. This is the conundrum at the heart of this monograph by Tommy Gravdahl and Olav Egeland on stall control for compressors. Operation of the compressor closer to the surge line can increase operational efficiency and flexibility The approach taken by the authors follows the modern control system paradigm: -physical understanding, detailed modelling and simulation studies and finally control studies. The thoroughness of the presentation, bibliography and appendices indicates that the volume has all the hallmarks of being a classic for its subject. Despite the monograph's narrow technical content, the techniques and insights presented should appeal to the wider industrial control community as well as the gas turbine/compressor specialist. M. J. Grimble and M. A.
Download or read book Predictive Control for Linear and Hybrid Systems written by Francesco Borrelli and published by Cambridge University Press. This book was released on 2017-06-22 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).
Download or read book Handbook of Model Predictive Control written by Saša V. Raković and published by Springer. This book was released on 2018-09-01 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Download or read book Constructive Nonlinear Control written by R. Sepulchre and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constructive Nonlinear Control presents a broad repertoire of constructive nonlinear designs not available in other works by widening the class of systems and design tools. Several streams of nonlinear control theory are merged and directed towards a constructive solution of the feedback stabilization problem. Analysis, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Geometry serves as a guide for the construction of design procedures whilst analysis provides the robustness which geometry lacks. New recursive designs remove earlier restrictions on feedback passivation. Recursive Lyapunov designs for feedback, feedforward and interlaced structures result in feedback systems with optimality properties and stability margins. The design-oriented approach will make this work a valuable tool for all those who have an interest in control theory.
Download or read book Model Based Predictive Control written by J.A. Rossiter and published by CRC Press. This book was released on 2017-07-12 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Predictive Control (MPC) has become a widely used methodology across all engineering disciplines, yet there are few books which study this approach. Until now, no book has addressed in detail all key issues in the field including apriori stability and robust stability results. Engineers and MPC researchers now have a volume that provides a complete overview of the theory and practice of MPC as it relates to process and control engineering. Model-Based Predictive Control, A Practical Approach, analyzes predictive control from its base mathematical foundation, but delivers the subject matter in a readable, intuitive style. The author writes in layman's terms, avoiding jargon and using a style that relies upon personal insight into practical applications. This detailed introduction to predictive control introduces basic MPC concepts and demonstrates how they are applied in the design and control of systems, experiments, and industrial processes. The text outlines how to model, provide robustness, handle constraints, ensure feasibility, and guarantee stability. It also details options in regard to algorithms, models, and complexity vs. performance issues.
Download or read book Stability Analysis of Markovian Jump Systems written by Yu Kang and published by Springer. This book was released on 2017-09-08 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the stability analysis of Markovian jump systems (MJSs) with various settings and discusses its applications in several different areas. It also presents general definitions of the necessary concepts and an overview of the recent developments in MJSs. Further, it addresses the general robust problem of Markovian jump linear systems (MJLSs), the asynchronous stability of a class of nonlinear systems, the robust adaptive control scheme for a class of nonlinear uncertain MJSs, the practical stability of MJSs and its applications as a modelling tool for networked control systems, Markovian-based control for wheeled mobile manipulators and the jump-linear-quadratic (JLQ) problem of a class of continuous-time MJLSs. It is a valuable resource for researchers and graduate students in the field of control theory and engineering.
Download or read book Predictive Control written by Yugeng Xi and published by John Wiley & Sons. This book was released on 2019-11-12 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive introduction to model predictive control (MPC), including its basic principles and algorithms, system analysis and design methods, strategy developments and practical applications. The main contents of the book include an overview of the development trajectory and basic principles of MPC, typical MPC algorithms, quantitative analysis of classical MPC systems, design and tuning methods for MPC parameters, constrained multivariable MPC algorithms and online optimization decomposition methods. Readers will then progress to more advanced topics such as nonlinear MPC and its related algorithms, the diversification development of MPC with respect to control structures and optimization strategies, and robust MPC. Finally, applications of MPC and its generalization to optimization-based dynamic problems other than control will be discussed. Systematically introduces fundamental concepts, basic algorithms, and applications of MPC Includes a comprehensive overview of MPC development, emphasizing recent advances and modern approaches Features numerous MPC models and structures, based on rigorous research Based on the best-selling Chinese edition, which is a key text in China Predictive Control: Fundamentals and Developments is written for advanced undergraduate and graduate students and researchers specializing in control technologies. It is also a useful reference for industry professionals, engineers, and technicians specializing in advanced optimization control technology.
Download or read book Advances in Control written by Paul M. Frank and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Control contains keynote contributions and tutorial material from the fifth European Control Conference, held in Germany in September 1999. The topics covered are of particular relevance to all academics and practitioners in the field of modern control engineering. These include: - Modern Control Theory - Fault Tolerant Control Systems - Linear Descriptor Systems - Generic Robust Control Design - Verification of Hybrid Systems - New Industrial Perspectives - Nonlinear System Identification - Multi-Modal Telepresence Systems - Advanced Strategies for Process Control - Nonlinear Predictive Control - Logic Controllers of Continuous Plants - Two-dimensional Linear Systems. This important collection of work is introduced by Professor P.M. Frank who has almost forty years of experience in the field of automatic control. State-of-the-art research, expert opinions and future developments in control theory and its industrial applications, combine to make this an essential volume for all those involved in control engineering.
Download or read book Economic Model Predictive Control written by Matthew Ellis and published by Springer. This book was released on 2016-07-27 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes.In addition to being mathematically rigorous, these methods accommodate key practical issues, for example, direct optimization of process economics, time-varying economic cost functions and computational efficiency. Numerous comments and remarks providing fundamental understanding of the merging of process economics and feedback control into a single framework are included. A control engineer can easily tailor the many detailed examples of industrial relevance given within the text to a specific application. The authors present a rich collection of new research topics and references to significant recent work making Economic Model Predictive Control an important source of information and inspiration for academics and graduate students researching the area and for process engineers interested in applying its ideas.
Download or read book Robust Adaptive Control written by Petros Ioannou and published by Courier Corporation. This book was released on 2013-09-26 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.
Download or read book Model Predictive Control written by James Blake Rawlings and published by . This book was released on 2017 with total page 770 pages. Available in PDF, EPUB and Kindle. Book excerpt: