EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Creating Autonomous Vehicle Systems

Download or read book Creating Autonomous Vehicle Systems written by Shaoshan Liu and published by Morgan & Claypool Publishers. This book was released on 2017-10-25 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.

Book Multi sensor Fusion for Autonomous Driving

Download or read book Multi sensor Fusion for Autonomous Driving written by Xinyu Zhang and published by Springer Nature. This book was released on with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of the 2024 International Conference on Artificial Intelligence and Communication  ICAIC 2024

Download or read book Proceedings of the 2024 International Conference on Artificial Intelligence and Communication ICAIC 2024 written by Yulin Wang and published by Springer Nature. This book was released on 2024 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Deep Learning and Computer Vision for Self Driving Cars

Download or read book Applied Deep Learning and Computer Vision for Self Driving Cars written by Sumit Ranjan and published by Packt Publishing Ltd. This book was released on 2020-08-14 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV Key FeaturesBuild and train powerful neural network models to build an autonomous carImplement computer vision, deep learning, and AI techniques to create automotive algorithmsOvercome the challenges faced while automating different aspects of driving using modern Python libraries and architecturesBook Description Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries. What you will learnImplement deep neural network from scratch using the Keras libraryUnderstand the importance of deep learning in self-driving carsGet to grips with feature extraction techniques in image processing using the OpenCV libraryDesign a software pipeline that detects lane lines in videosImplement a convolutional neural network (CNN) image classifier for traffic signal signsTrain and test neural networks for behavioral-cloning by driving a car in a virtual simulatorDiscover various state-of-the-art semantic segmentation and object detection architecturesWho this book is for If you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.

Book Computer Vision and Image Processing

Download or read book Computer Vision and Image Processing written by Deep Gupta and published by Springer Nature. This book was released on 2023-05-06 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set (CCIS 1776-1777) constitutes the refereed proceedings of the 7th International Conference on Computer Vision and Image Processing, CVIP 2022, held in Nagpur, India, November 4–6, 2022. The 110 full papers and 11 short papers were carefully reviewed and selected from 307 submissions. Out of 121 papers, 109 papers are included in this book. The topical scope of the two-volume set focuses on Medical Image Analysis, Image/ Video Processing for Autonomous Vehicles, Activity Detection/ Recognition, Human Computer Interaction, Segmentation and Shape Representation, Motion and Tracking, Image/ Video Scene Understanding, Image/Video Retrieval, Remote Sensing, Hyperspectral Image Processing, Face, Iris, Emotion, Sign Language and Gesture Recognition, etc.

Book 10th International Munich Chassis Symposium 2019

Download or read book 10th International Munich Chassis Symposium 2019 written by Peter E. Pfeffer and published by Springer Nature. This book was released on 2019-11-01 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing automation of driving functions and the electrification of powertrains present new challenges for the chassis with regard to complexity, redundancy, data security,and installation space. At the same time, the mobility of the future will also require entirely new vehicle concepts, particularly in urban areas. The intelligent chassis must be connected, electrified, and automated in order to be best prepared for this future.

Book Advances and Applications of DSmT for Information Fusion  Collected Works  Volume 5

Download or read book Advances and Applications of DSmT for Information Fusion Collected Works Volume 5 written by Florentin Smarandache and published by Infinite Study. This book was released on with total page 931 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well.

Book Modeling and Adaptive Nonlinear Control of Electric Motors

Download or read book Modeling and Adaptive Nonlinear Control of Electric Motors written by Farshad Khorrami and published by Springer Science & Business Media. This book was released on 2003-05-21 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, modeling and control design of electric motors, namely step motors, brushless DC motors and induction motors, are considered. The book focuses on recent advances on feedback control designs for various types of electric motors, with a slight emphasis on stepper motors. For this purpose, the authors explore modeling of these devices to the extent needed to provide a high-performance controller, but at the same time one amenable to model-based nonlinear designs. The control designs focus primarily on recent robust adaptive nonlinear controllers to attain high performance. It is shown that the adaptive robust nonlinear controller on its own achieves reasonably good performance without requiring the exact knowledge of motor parameters. While carefully tuned classical controllers often achieve required performance in many applications, it is hoped that the advocated robust and adaptive designs will lead to standard universal controllers with minimal need for fine tuning of control parameters.

Book Robust Environmental Perception and Reliability Control for Intelligent Vehicles

Download or read book Robust Environmental Perception and Reliability Control for Intelligent Vehicles written by Huihui Pan and published by Springer Nature. This book was released on 2023-11-25 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most recent state-of-the-art algorithms on robust environmental perception and reliability control for intelligent vehicle systems. By integrating object detection, semantic segmentation, trajectory prediction, multi-object tracking, multi-sensor fusion, and reliability control in a systematic way, this book is aimed at guaranteeing that intelligent vehicles can run safely in complex road traffic scenes. Adopts the multi-sensor data fusion-based neural networks to environmental perception fault tolerance algorithms, solving the problem of perception reliability when some sensors fail by using data redundancy. Presents the camera-based monocular approach to implement the robust perception tasks, which introduces sequential feature association and depth hint augmentation, and introduces seven adaptive methods. Proposes efficient and robust semantic segmentation of traffic scenes through real-time deep dual-resolution networks and representation separation of vision transformers. Focuses on trajectory prediction and proposes phased and progressive trajectory prediction methods that is more consistent with human psychological characteristics, which is able to take both social interactions and personal intentions into account. Puts forward methods based on conditional random field and multi-task segmentation learning to solve the robust multi-object tracking problem for environment perception in autonomous vehicle scenarios. Presents the novel reliability control strategies of intelligent vehicles to optimize the dynamic tracking performance and investigates the completely unknown autonomous vehicle tracking issues with actuator faults.

Book Deep Neural Networks and Data for Automated Driving

Download or read book Deep Neural Networks and Data for Automated Driving written by Tim Fingscheidt and published by Springer Nature. This book was released on 2022-07-19 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book brings together the latest developments from industry and research on automated driving and artificial intelligence. Environment perception for highly automated driving heavily employs deep neural networks, facing many challenges. How much data do we need for training and testing? How to use synthetic data to save labeling costs for training? How do we increase robustness and decrease memory usage? For inevitably poor conditions: How do we know that the network is uncertain about its decisions? Can we understand a bit more about what actually happens inside neural networks? This leads to a very practical problem particularly for DNNs employed in automated driving: What are useful validation techniques and how about safety? This book unites the views from both academia and industry, where computer vision and machine learning meet environment perception for highly automated driving. Naturally, aspects of data, robustness, uncertainty quantification, and, last but not least, safety are at the core of it. This book is unique: In its first part, an extended survey of all the relevant aspects is provided. The second part contains the detailed technical elaboration of the various questions mentioned above.

Book Autonomous Vehicles and Systems

Download or read book Autonomous Vehicles and Systems written by Ishwar K. Sethi and published by CRC Press. This book was released on 2024-02-06 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book captures multidisciplinary research encompassing various facets of autonomous vehicle systems (AVS) research and developments. The AVS field is rapidly moving towards realization with numerous advances continually reported. The contributions to this field come from widely varying branches of knowledge, making it a truly multidisciplinary area of research and development. The topics covered in the book include: AI and deep learning for AVS Autonomous steering through deep neural networks Adversarial attacks and defenses on autonomous vehicles Gesture recognition for vehicle control Multi-sensor fusion in autonomous vehicles Teleoperation technologies for AVS Simulation and game theoretic decision making for AVS Path following control system design for AVS Hybrid cloud and edge solutions for AVS Ethics of AVS

Book Artificial Intelligence and Smart Vehicles

Download or read book Artificial Intelligence and Smart Vehicles written by Mehdi Ghatee and published by Springer Nature. This book was released on 2023-10-04 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Conference on Artificial Intelligence and Smart Vehicles, ICAISV 2023, held in Tehran, Iran, during May 24-25, 2023. The 14 full papers included in this book were carefully reviewed and selected from 93 submissions. They were organized in topical sections as follows: machine learning, data mining, machine vision, image processing, signal analysis, decision support systems, expert systems, and their applications in smart vehicles.

Book Driving to Safety

Download or read book Driving to Safety written by Nidhi Kalra and published by . This book was released on 2016 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Dynamics of Vehicles on Roads and Tracks III

Download or read book Advances in Dynamics of Vehicles on Roads and Tracks III written by Wei Huang and published by Springer Nature. This book was released on with total page 997 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Deep Learning for Robot Perception and Cognition

Download or read book Deep Learning for Robot Perception and Cognition written by Alexandros Iosifidis and published by Academic Press. This book was released on 2022-02-04 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis

Book Person Re Identification

    Book Details:
  • Author : Shaogang Gong
  • Publisher : Springer Science & Business Media
  • Release : 2014-01-03
  • ISBN : 144716296X
  • Pages : 446 pages

Download or read book Person Re Identification written by Shaogang Gong and published by Springer Science & Business Media. This book was released on 2014-01-03 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.

Book Modeling  Simulation  and Control of AI Robotics and Autonomous Systems

Download or read book Modeling Simulation and Control of AI Robotics and Autonomous Systems written by Choudhury, Tanupriya and published by IGI Global. This book was released on 2024-05-23 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chasm between the physical capabilities of Intelligent Robotics and Autonomous Systems (IRAS) and their cognitive potential presents a formidable challenge. While these machines exhibit astonishing strength, precision, and speed, their intelligence and adaptability lag far behind. This inherent limitation obstructs the realization of autonomous systems that could reshape industries, from self-driving vehicles to industrial automation. The solution to this dilemma is unveiled within the pages of Modeling, Simulation, and Control of AI Robotics and Autonomous Systems. Find within the pages of this book answers for the cognitive deficit within IRAS. While these systems boast remarkable physical capabilities, their potential for intelligent decision-making and adaptation remains stunted, thereby bringing innovation to a halt. Solving this issue would mean the re-acceleration of multiple industries that could utilize automation to prevent humans from needing to do work that is dangerous, and could revolutionize transportation, and more.