EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Robotic Touch for Contact Perception

Download or read book Robotic Touch for Contact Perception written by Lin, Xi and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tactile perception subserves the impressive dexterity found in humans but also found in their robotic counterparts. Recently, a new wave of tactile sensors relying on off-the-shelf cameras, provide a dense tactile image of the contact. However, by the way these sensors operate, the link between the mechanics of the skin and the tactile images is not evident. In this thesis, we present a novel camera-based tactile sensor, named ChromaTouch, which captures physically-driven dense images of the three-dimensional interaction that happens at the interface between the artificial skin and the touched object. The sensor measures the strain field induced by the contact, by imaging the pattern and color change of two overlapping markers array, one translucent and yellow and the other opaque and magenta. The motif seen by the camera is a bijective function of the relative motion of the markers allowing a reconstruction of the stress and strain field at the interface. The sensor, boasting up to 441 sensing elements, shows high robustness to external luminosity and camera resolution, and it is able to estimate the local coefficient of friction of the contact surface with one simple press. A hemispherical version extended the results to arbitrary shapes and is able to estimate the local curvature via a simple press using Hertz contact theory. Sensing the dense 3d deformation field at the contact opens the doors to a comprehensive, physically-based measurement of the interaction. Improved artificial perception of the object and of the interaction can inform robotic exploration, dexterous grasping and manipulation.

Book Robotic Tactile Sensing

Download or read book Robotic Tactile Sensing written by Ravinder S. Dahiya and published by Springer Science & Business Media. This book was released on 2012-07-29 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. The efforts during last four decades or so have yielded a wide spectrum of tactile sensing technologies and engineered solutions for both intrinsic and extrinsic touch sensors. Nowadays, new materials and structures are being explored for obtaining robotic skin with physical features like bendable, conformable, and stretchable. Such features are important for covering various body parts of robots or 3D surfaces. Nonetheless, there exist many more hardware, software and application related issues that must be considered to make tactile sensing an effective component of future robotic platforms. This book presents an in-depth analysis of various system related issues and presents the trade-offs one may face while developing an effective tactile sensing system. For this purpose, human touch sensing has also been explored. The design hints coming out of the investigations into human sense of touch can be useful in improving the effectiveness of tactile sensory modality in robotics and other machines. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. The concept of semiconductor devices based sensors is an interesting one, as it allows compact and fast tactile sensing systems with capabilities such as human-like spatio-temporal resolution. This book presents a comprehensive description of semiconductor devices based tactile sensing. In particular, novel Piezo Oxide Semiconductor Field Effect Transistor (POSFET) based approach for high resolution tactile sensing has been discussed in detail. Finally, the extension of semiconductors devices based sensors concept to large and flexile areas has been discussed for obtaining robotic or electronic skin. With its multidisciplinary scope, this book is suitable for graduate students and researchers coming from diverse areas such robotics (bio-robots, humanoids, rehabilitation etc.), applied materials, humans touch sensing, electronics, microsystems, and instrumentation. To better explain the concepts the text is supported by large number of figures.

Book High resolution Tactile Sensing for Robotic Perception

Download or read book High resolution Tactile Sensing for Robotic Perception written by Wenzhen Yuan (Ph. D.) and published by . This book was released on 2018 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why is it so difficult for the present-day robots to act intelligently in the real-world environment? A major challenge lies in the lack of adequate tactile sensing technologies. Robots need tactile sensing to understand the physical environment, and detect the contact states during manipulation. A recently developed high-resolution tactile sensor, GelSight, which measures detailed information about the geometry and traction field on the contact surface, shows substantial potential for extending the application of tactile sensing in robotics. The major questions are: (1) What physical information is available from the high-resolution sensor? (2) How can the robot interpret and use this information? This thesis aims at addressing the two questions above. On the one hand, the tactile feedback helps robots to interact better with the environment, i.e., perform better exploration and manipulation. I investigate various techniques for detecting incipient slip and full slip during contact with objects, which helps a robot to grasp them securely. On the other hand, tactile sensing also helps a robot to better understand the physical environment. That can be reflected in estimating the material properties of the surrounding objects. I will present my work on using tactile sensing to estimate the hardness of arbitrary objects, and making a robot autonomously explore the comprehensive properties of common clothing. I also show our work on the unsupervised exploration of latent properties of fabrics through cross-modal learning with vision and touch.

Book Robotic Tactile Perception and Understanding

Download or read book Robotic Tactile Perception and Understanding written by Huaping Liu and published by Springer. This book was released on 2018-03-20 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the challenges of robotic tactile perception and task understanding, and describes an advanced approach based on machine learning and sparse coding techniques. Further, a set of structured sparse coding models is developed to address the issues of dynamic tactile sensing. The book then proves that the proposed framework is effective in solving the problems of multi-finger tactile object recognition, multi-label tactile adjective recognition and multi-category material analysis, which are all challenging practical problems in the fields of robotics and automation. The proposed sparse coding model can be used to tackle the challenging visual-tactile fusion recognition problem, and the book develops a series of efficient optimization algorithms to implement the model. It is suitable as a reference book for graduate students with a basic knowledge of machine learning as well as professional researchers interested in robotic tactile perception and understanding, and machine learning.

Book Advanced Tactile Sensing For Robotics

Download or read book Advanced Tactile Sensing For Robotics written by Howard R Nicholls and published by World Scientific. This book was released on 1992-12-10 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced robot systems require sensory information to enable them to make decisions and to carry out actions in a versatile, autonomous way. Humans make considerable use of information derived through touch, and an emerging domain of robot sensing is tactile sensing. This book considers various aspects of tactile sensing, from hardware design through to the use of tactile data in exploratory situations using a multi-fingered robot hand.In the first part of the book, the current state of progress of tactile sensing is surveyed, and it is found that the field is still in an early stage of development. Next, some fundamental issues in planar elasticity, concerning the interaction between tactile sensors and the environment, are presented. Having established how the basic data can be derived from the sensors, the issues of what form tactile sensors should take, and how they should be used, are considered. This is particularly important given the infancy of this field. The human tactile system is examined, and then biological touch and its implications for robotics is looked at. Some experiments in dextrous manipulation using a robot hand are described, which apply some of these results. The integration of tactile sensors into a complete system is also considered, and another, novel, approach for using touch sensing in a flexible assembly machine is described.Both basic material and new research results are provided in this book, thus catering to different levels of readers. The chapters by world experts in different aspects of the field are integrated well into one volume. The editor and authors have produced a thorough and in-depth survey of all work in robot tactile sensing, making the book essential reading for all researchers in this emergent field.

Book Active Touch Sensing

Download or read book Active Touch Sensing written by Robyn Grant and published by Frontiers E-books. This book was released on 2014-07-14 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Active touch can be described as the control of the position and movement of tactile sensing systems to facilitate information gain. In other words, it is finding out about the world by reaching out and exploring—sensing by ‘touching’ as opposed to ‘being touched’. In this Research Topic (with cross-posting in both Behavioural Neuroscience and Neurorobotics) we welcomed articles from junior researchers on any aspect of active touch. We were especially interested in articles on the behavioral, physiological and neuronal underpinnings of active touch in a range of species (including humans) for submission to Frontiers in Behavioural Neuroscience. We also welcomed articles describing robotic systems with biomimetic or bio-inspired tactile sensing systems for publication in Frontiers in Neurorobotics.

Book Informative Touch for Intelligent Soft Robots

Download or read book Informative Touch for Intelligent Soft Robots written by Benjamin Shih and published by . This book was released on 2020 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: As robots grow increasingly prevalent in real-world environments, sensory systems capable of sensing complex deformations and environmental interactions are needed for robust control. Soft robotics has emerged as a field of study that seeks to replace rigid components in traditional robots with materials that are compliant. It has garnered interest for real-world applications due to intrinsic safety embedded at the material level, deformable materials capable of shape and behavioral changes, and conformable physical contact for manipulation.-Yet, with the introduction of soft and stretchable materials to robotic systems comes a myriad of challenges for sensor integration, including multi-modal sensing capable of stretching, embedment of high-resolution but large-area sensor arrays, and sensor fusion with an increasing volume of data. This dissertation describes the design, fabrication, and data processing of soft, tactile sensor skins, with the ultimate goal of enhancing future collaborative robots that will work alongside and physically interact with people with a human-like sense of touch. This thesis focuses on how the integration of soft sensor skins and machine learning enables soft robots to perceive physical interaction for complex haptic tasks. Part 1 on Soft Sensors (Chapters 2, 3, and 4) presents the design and fabrication of various types of soft strain sensors, using compliant materials such as silicones and polymers. Fabrication methods include soft lithography and 3D printing. Performance of the sensors are characterized and modeled. Part 2 on Soft Robot Perception (Chapters 5 and 6) describes how machine learning can be used to augment the performance of soft sensors and actuators. The method demonstrates how recurrent neural networks can be used for graceful degradation and learned perception of external contacts and forces despite not having a priori information about the individual sensors. Part 3 on Social Touch for Physical Human-Robot Interaction (Chapters 7 and 8) analyzes the use of the liquid metal sensors as robotic skins for the classification of affective (social) touch and builds towards the development of a framework for representing physical contact, for use at the human-robot interaction layer of abstraction. In recent years, the concept of soft-bodied robots has rapidly grown in popularity. Researchers have developed many interesting forms of actuation that more closely mimic the functionality and capabilities found in nature. The next step for the field is to develop biologically-inspired tactile sensing for soft-bodied robots that can safely interact with and explore their environments. In the short term, the field can focus on deployable, high-resolution sensor skins, algorithms for processing the dense sensor information, and reliable feedback control for soft robots. Building upon the fundamental work presented in this dissertation, the future consists of robots that can touch and feel with the sensitivity and perception of natural systems.

Book Tactile Sensing and Displays

Download or read book Tactile Sensing and Displays written by Javad Dargahi and published by John Wiley & Sons. This book was released on 2012-11-06 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensively covers the key technologies for the development of tactile perception in minimally invasive surgery Covering the timely topic of tactile sensing and display in minimally invasive and robotic surgery, this book comprehensively explores new techniques which could dramatically reduce the need for invasive procedures. The tools currently used in minimally invasive surgery (MIS) lack any sort of tactile sensing, significantly reducing the performance of these types of procedures. This book systematically explains the various technologies which the most prominent researchers have proposed to overcome the problem. Furthermore, the authors put forward their own findings, which have been published in recent patents and patent applications. These solutions offer original and creative means of surmounting the current drawbacks of MIS and robotic surgery. Key features:- Comprehensively covers topics of this ground-breaking technology including tactile sensing, force sensing, tactile display, PVDF fundamentals Describes the mechanisms, methods and sensors that measure and display kinaesthetic and tactile data between a surgical tool and tissue Written by authors at the cutting-edge of research into the area of tactile perception in minimally invasive surgery Provides key topic for academic researchers, graduate students as well as professionals working in the area

Book The Biomechanics of the Tactile Perception of Friction

Download or read book The Biomechanics of the Tactile Perception of Friction written by Laurence Willemet and published by Springer Nature. This book was released on 2022-10-31 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Humans rely on their sense of touch to perceive subtle movements and micro slippages to manipulate an impressive range of objects. This incredible dexterity relies on fast and unconscious adjustments of the grip force that holds an object strong enough to avoid a catastrophic fall yet gentle enough not to damage it. The Biomechanics of the Tactile Perception of Friction covers how the complex mechanical interaction is perceived by the nervous system to quickly infer the state of the contact for a swift and precise regulation of the grip. The first part focuses on how humans assess friction at the contact initialization and the second part highlights an efficient coding strategy that the nervous system might use to continuously adjust the grip force to keep a constant safety margin before slippage. Taken together, these results reveal how the perception of frictional information is encoded in the deformation of our skin. The findings are useful for designing bio-inspired tactile sensors for robotics or prosthetics and for improving haptic human-machine interactions.

Book Tactile Sensors for Robotic Applications

Download or read book Tactile Sensors for Robotic Applications written by Salvatore Pirozzi and published by MDPI. This book was released on 2021-03-17 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers different aspects: - Innovative technologies for tactile sensors development - Tactile data interpretation for control purposes - Alternative sensing technologies - Multi-sensor systems for grasping and manipulation - Sensing solutions for impaired people

Book Scholarpedia of Touch

Download or read book Scholarpedia of Touch written by Tony Prescott and published by Springer. This book was released on 2015-11-21 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scholarpedia’s Encyclopedia of Touch provides a comprehensive collection of peer-reviewed articles written by leading researchers, detailing our current scientific understanding of tactile sensing and its neural substrates in animals including humans. The encyclopedia allows ideas and insights to be shared between researchers working on different aspects of touch and in different species, including research in synthetic touch systems. In addition, this encyclopedia raises awareness of research in tactile sensing and increases scientific and public interest in the field. The articles address subjects including tactile control, whiskered robots, vibrissal coding, the molecular basis of touch, invertebrate mechanoreception, fingertip transducers and tactile sensing. All the articles in this encyclopedia provide in-depth and state-of-the-art scholarly treatment of the academic topics concerned, making it an excellent reference work for academics, professionals and students.

Book Robotics Research

Download or read book Robotics Research written by Sebastian Thrun and published by Springer. This book was released on 2007-05-16 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains 50 papers presented at the 12th International Symposium of Robotics Research, which took place October 2005 in San Francisco, CA. Coverage includes: physical human-robot interaction, humanoids, mechanisms and design, simultaneous localization and mapping, field robots, robotic vision, robot design and control, underwater robotics, learning and adaptive behavior, networked robotics, and interfaces and interaction.

Book Social Robots  Technological  Societal and Ethical Aspects of Human Robot Interaction

Download or read book Social Robots Technological Societal and Ethical Aspects of Human Robot Interaction written by Oliver Korn and published by Springer. This book was released on 2019-07-01 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social robots not only work with humans in collaborative workspaces – we meet them in shopping malls and even more personal settings like health and care. Does this imply they should become more human, able to interpret and adequately respond to human emotions? Do we want them to help elderly people? Do we want them to support us when we are old ourselves? Do we want them to just clean and keep things orderly – or would we accept them helping us to go to the toilet, or even feed us if we suffer from Parkinson’s disease? The answers to these questions differ from person to person. They depend on cultural background, personal experiences – but probably most of all on the robot in question. This book covers the phenomenon of social robots from the historic roots to today’s best practices and future perspectives. To achieve this, we used a hands-on, interdisciplinary approach, incorporating findings from computer scientists, engineers, designers, psychologists, doctors, nurses, historians and many more. The book also covers a vast spectrum of applications, from collaborative industrial work over education to sales. Especially for developments with a high societal impact like robots in health and care settings, the authors discuss not only technology, design and usage but also ethical aspects. Thus this book creates both a compendium and a guideline, helping to navigate the design space for future developments in social robotics.

Book Tactile Perception  Haptic Exploration  and Map Rendering for Robots that Operate Within Granular Materials

Download or read book Tactile Perception Haptic Exploration and Map Rendering for Robots that Operate Within Granular Materials written by Jia Shengxin and published by . This book was released on 2022 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robots are expected to operate autonomously in unstructured, real-world environments. For effective physical interaction with the world, robots must build and refine their understanding of the environment through sensory feedback. However, tactile feedback has been used primarily in open-air environments and not within granular materials. When robots operate within opaque granular materials, tactile and proprioceptive feedback can be more informative than visual feedback. Our long-term objective is to leverage tactile sensors to develop efficient algorithms that enable robots to infer environmental conditions and to plan exploratory movements that reduce uncertainty in their models of the world. Motivated by the need to keep humans out of harm's way in search and rescue or other field environments, we address the challenge of using tactile feedback to locate objects buried in granular materials. In study \#1, we designed a tactile perception pipeline for sensorized robot fingertips that directly interact with granular materials in teleoperated systems. We proposed an architecture called the Sparse-Fusion Recurrent Neural Network (SF-RNN) to detect contact with an object buried within granular materials. We leveraged multimodal tactile sensor data in order to classify contact states within five different granular materials. We also constructed a belief map that combines probabilistic contact state estimates and fingertip location. In study \#2, we developed a framework for tactile perception, mapping, and haptic exploration for the autonomous localization of objects buried in granular materials. The haptic exploration task was performed within densely packed sand mixtures using sensor models that account for granular material characteristics and aid in the interpretation of interaction forces between the robot and its environment. The haptic exploration strategy was designed to efficiently locate and refine the outline of a buried object while simultaneously minimizing potentially damaging physical interactions with the object. Continuous occupancy maps were generated that fused local, sparse tactile information into global maps. In summary, we developed tactile-based frameworks for perception, planning, and mapping for the challenging task of localizing objects buried within granular materials. Our work can serve as a foundation for more complex, autonomous robotic behaviors such as the excavation and bimanual retrieval of fragile, buried objects.

Book Human Haptic Perception

    Book Details:
  • Author : Martin Grunwald
  • Publisher : Springer Science & Business Media
  • Release : 2008-10-17
  • ISBN : 3764376112
  • Pages : 654 pages

Download or read book Human Haptic Perception written by Martin Grunwald and published by Springer Science & Business Media. This book was released on 2008-10-17 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: Haptic perception – human beings’ active sense of touch – is the most complex of human sensory systems, and has taken on growing importance within varied scientific disciplines as well as in practical industrial fields. This book's international team of authors presents the most comprehensive collection of writings on the subject published to date and cover the results of research as well as practical applications. After an introduction to the theory and history of the field, subsequent chapters are dedicated to the neuro-physiological basics as well as the psychological and clinical neuro-psychological aspects of haptic perception.

Book Soft Tactile Sensor Embedded Artificial Skin

Download or read book Soft Tactile Sensor Embedded Artificial Skin written by Jianzhu Yin and published by . This book was released on 2017 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: When making contact with objects, we perceive them as warm or cold, rough or smooth, and hard or soft using multiple mechanoreceptors. Current robots and prosthesis lack the perception of touch that is vital for in-hand manipulation and finger-object interaction, thus struggling on certain tasks such as slip prevention, grip control, and texture/stiffness recognition. Tactile feedback on robot manipulators and prosthetic hands are important advancement because it enables manipulation in unstructured surroundings, reveals surface/volumetric properties of objects and improves robotic/prosthetic autonomy. Sensor skin can provide rich, real-time tactile information to aid manipulation and can conformally wrap around a variety of existing fingertips. Numerous soft tactile sensors have been developed using liquid metal (eutectic Gallium Indium, or eGaIn) and flexible elastomer. These sensor skins are inferior to human tactile sensing performance in terms of sensitivity, spatial and/or temporal resolution. Current approaches to measure shear force suffer from poor resolution and ambiguity. A highly sensitive sensor skin that accurately resolves contact force in three-dimension and senses vibration is needed for artificial manipulator to better interact with the environment and external objects. This dissertation describes the design and development of a soft tactile sensing skin that is conformable to existing robotic manipulators and provides dynamic tactile sensing of normal and shear force as well as vibration. A bioinspired shear force sensor is developed by measuring the asymmetric strain pattern of sensor skin when shear force is applied. However normal force would induce symmetric strain pattern, analytically proving that the sensor response is independent of normal force. A 2D solid mechanics steady finite element analysis is developed to evaluate the sensor performance and determine geometric parameters of the artificial skin and strain sensor that provide adequate sensitivity over the light touch shear force range. Static characterization experiments are conducted to produce the linear calibration between sensor response and shear force. This relation is matches analytical estimations as well as simulation predictions. The artificial sensor skin is further examined dynamically in stepwise unloading, slip and controlled vibration tests. We show that the sensor has potential of detecting insipient slip and can resolve vibrations equivalent, or better, than humans. The sensor resolves a variety of tactile events during pick and place, drop or handoff tasks on a robotic manipulator. The shear tactile sensor skin is extended to two-dimensions and integrated with a normal force sensor. The resistive normal force sensor is based on deformation of liquid metal filled spiral shaped microfluidic channel with respect to normal force. The normal force sensors exhibit sensitivity of 18 %/N and better-than-human performance to measure vibration. It is shown that the integrated sensor skin encodes spatially dispersed normal force and lumped shear force in two directions, although there are design and optimization challenges to match the sensitivity to one-dimension shear sensing skin. This research has resulted in the development of a flexible normal and shear sensing skin that is also capable of sensing vibration. The sensing skin can be applied to robotic manipulators or prosthetic hands to improve manipulation performance, prevent slip, gather surface/volumetric object properties for autonomous robot or smarter and more user-friendly prosthesis.

Book Living Machines

    Book Details:
  • Author : Tony J. Prescott
  • Publisher : Oxford University Press
  • Release : 2018
  • ISBN : 0199674922
  • Pages : 655 pages

Download or read book Living Machines written by Tony J. Prescott and published by Oxford University Press. This book was released on 2018 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contemporary research in the field of robotics attempts to harness the versatility and sustainability of living organisms with the hope of rendering a renewable, adaptable, and robust class of technology that can facilitate self-repairing, social, and moral--even conscious--machines. This landmark volume surveys this flourishing area of research.