Download or read book Robust Optimization written by Aharon Ben-Tal and published by Princeton University Press. This book was released on 2009-08-10 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Download or read book Robust Discrete Optimization and Its Applications written by Panos Kouvelis and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with decision making in environments of significant data un certainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness ap proach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: • It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; • It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; • It accounts for the risk averse nature of decision makers; and • It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of opera tional decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making.
Download or read book Robust Portfolio Optimization and Management written by Frank J. Fabozzi and published by John Wiley & Sons. This book was released on 2007-04-27 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Robust Portfolio Optimization and Management "In the half century since Harry Markowitz introduced his elegant theory for selecting portfolios, investors and scholars have extended and refined its application to a wide range of real-world problems, culminating in the contents of this masterful book. Fabozzi, Kolm, Pachamanova, and Focardi deserve high praise for producing a technically rigorous yet remarkably accessible guide to the latest advances in portfolio construction." --Mark Kritzman, President and CEO, Windham Capital Management, LLC "The topic of robust optimization (RO) has become 'hot' over the past several years, especially in real-world financial applications. This interest has been sparked, in part, by practitioners who implemented classical portfolio models for asset allocation without considering estimation and model robustness a part of their overall allocation methodology, and experienced poor performance. Anyone interested in these developments ought to own a copy of this book. The authors cover the recent developments of the RO area in an intuitive, easy-to-read manner, provide numerous examples, and discuss practical considerations. I highly recommend this book to finance professionals and students alike." --John M. Mulvey, Professor of Operations Research and Financial Engineering, Princeton University
Download or read book Mathematical Programming for Power Systems Operation written by Alejandro Garcés and published by John Wiley & Sons. This book was released on 2021-12-01 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the theoretical foundations and real-world power system applications of convex programming In Mathematical Programming for Power System Operation with Applications in Python, Professor Alejandro Garces delivers a comprehensive overview of power system operations models with a focus on convex optimization models and their implementation in Python. Divided into two parts, the book begins with a theoretical analysis of convex optimization models before moving on to related applications in power systems operations. The author eschews concepts of topology and functional analysis found in more mathematically oriented books in favor of a more natural approach. Using this perspective, he presents recent applications of convex optimization in power system operations problems. Mathematical Programming for Power System Operation with Applications in Python uses Python and CVXPY as tools to solve power system optimization problems and includes models that can be solved with the presented framework. The book also includes: A thorough introduction to power system operation, including economic and environmental dispatch, optimal power flow, and hosting capacity Comprehensive explorations of the mathematical background of power system operation, including quadratic forms and norms and the basic theory of optimization Practical discussions of convex functions and convex sets, including affine and linear spaces, politopes, balls, and ellipsoids In-depth examinations of convex optimization, including global optimums, and first and second order conditions Perfect for undergraduate students with some knowledge in power systems analysis, generation, or distribution, Mathematical Programming for Power System Operation with Applications in Python is also an ideal resource for graduate students and engineers practicing in the area of power system optimization.
Download or read book Financial Risk Modelling and Portfolio Optimization with R written by Bernhard Pfaff and published by John Wiley & Sons. This book was released on 2016-08-16 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. Explores portfolio risk concepts and optimization with risk constraints. Is accompanied by a supporting website featuring examples and case studies in R. Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.
Download or read book Multistage Stochastic Optimization written by Georg Ch. Pflug and published by Springer. This book was released on 2014-11-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.
Download or read book Robust Optimal Planning and Operation of Electrical Energy Systems written by Behnam Mohammadi-ivatloo and published by Springer. This book was released on 2019-02-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the recent developments in robust optimization (RO) and information gap design theory (IGDT) methods and their application for the optimal planning and operation of electric energy systems. Chapters cover both theoretical background and applications to address common uncertainty factors such as load variation, power market price, and power generation of renewable energy sources. Case studies with real-world applications are included to help undergraduate and graduate students, researchers and engineers solve robust power and energy optimization problems and provide effective and promising solutions for the robust planning and operation of electric energy systems.
Download or read book Optimization written by Jan Brinkhuis and published by Princeton University Press. This book was released on 2011-02-11 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained textbook is an informal introduction to optimization through the use of numerous illustrations and applications. The focus is on analytically solving optimization problems with a finite number of continuous variables. In addition, the authors provide introductions to classical and modern numerical methods of optimization and to dynamic optimization. The book's overarching point is that most problems may be solved by the direct application of the theorems of Fermat, Lagrange, and Weierstrass. The authors show how the intuition for each of the theoretical results can be supported by simple geometric figures. They include numerous applications through the use of varied classical and practical problems. Even experts may find some of these applications truly surprising. A basic mathematical knowledge is sufficient to understand the topics covered in this book. More advanced readers, even experts, will be surprised to see how all main results can be grounded on the Fermat-Lagrange theorem. The book can be used for courses on continuous optimization, from introductory to advanced, for any field for which optimization is relevant.
Download or read book Optimization Under Uncertainty with Applications to Aerospace Engineering written by Massimiliano Vasile and published by Springer Nature. This book was released on 2021-02-15 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an expanding world with limited resources, optimization and uncertainty quantification have become a necessity when handling complex systems and processes. This book provides the foundational material necessary for those who wish to embark on advanced research at the limits of computability, collecting together lecture material from leading experts across the topics of optimization, uncertainty quantification and aerospace engineering. The aerospace sector in particular has stringent performance requirements on highly complex systems, for which solutions are expected to be optimal and reliable at the same time. The text covers a wide range of techniques and methods, from polynomial chaos expansions for uncertainty quantification to Bayesian and Imprecise Probability theories, and from Markov chains to surrogate models based on Gaussian processes. The book will serve as a valuable tool for practitioners, researchers and PhD students.
Download or read book Lectures on Stochastic Programming written by Alexander Shapiro and published by SIAM. This book was released on 2009-01-01 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.
Download or read book Probabilistic Design for Optimization and Robustness for Engineers written by Bryan Dodson and published by John Wiley & Sons. This book was released on 2014-10-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Design for Optimization and Robustness: Presents the theory of modeling with variation using physical models and methods for practical applications on designs more insensitive to variation. Provides a comprehensive guide to optimization and robustness for probabilistic design. Features examples, case studies and exercises throughout. The methods presented can be applied to a wide range of disciplines such as mechanics, electrics, chemistry, aerospace, industry and engineering. This text is supported by an accompanying website featuring videos, interactive animations to aid the readers understanding.
Download or read book Robustness Analysis in Decision Aiding Optimization and Analytics written by Michael Doumpos and published by Springer. This book was released on 2016-07-12 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad coverage of the recent advances in robustness analysis in decision aiding, optimization, and analytics. It offers a comprehensive illustration of the challenges that robustness raises in different operations research and management science (OR/MS) contexts and the methodologies proposed from multiple perspectives. Aside from covering recent methodological developments, this volume also features applications of robust techniques in engineering and management, thus illustrating the robustness issues raised in real-world problems and their resolution within advances in OR/MS methodologies. Robustness analysis seeks to address issues by promoting solutions, which are acceptable under a wide set of hypotheses, assumptions and estimates. In OR/MS, robustness has been mostly viewed in the context of optimization under uncertainty. Several scholars, however, have emphasized the multiple facets of robustness analysis in a broader OR/MS perspective that goes beyond the traditional framework, seeking to cover the decision support nature of OR/MS methodologies as well. As new challenges emerge in a “big-data'” era, where the information volume, speed of flow, and complexity increase rapidly, and analytics play a fundamental role for strategic and operational decision-making at a global level, robustness issues such as the ones covered in this book become more relevant than ever for providing sound decision support through more powerful analytic tools.
Download or read book Optimization Methods in Finance written by Gerard Cornuejols and published by Cambridge University Press. This book was released on 2006-12-21 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.
Download or read book Energy Power Risk written by George Levy and published by Emerald Group Publishing. This book was released on 2018-12-10 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes both mathematical and computational tools for energy and power risk management, deriving from first principles stochastic models for simulating commodity risk and how to design robust C++ to implement these models.
Download or read book Introduction to Stochastic Programming written by John R. Birge and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.
Download or read book Distributionally Robust Optimization and its Applications in Power System Energy Storage Sizing written by Rui Xie and published by Springer Nature. This book was released on with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nature inspired Methods for Stochastic Robust and Dynamic Optimization written by Javier Del Ser Lorente and published by BoD – Books on Demand. This book was released on 2018-07-18 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems.