Download or read book Rigorous Proofs for Riemann Hypothesis Polignac s and Twin Prime Conjectures written by John Ting and published by . This book was released on 2019-11-10 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the 2019 research paper condensed to include rigorous proofs for Riemann hypothesis (and explaining the two types of Gram points in Riemann zeta function), Polignac's and Twin prime conjectures. Proceeds from the purchase of this book will go towards conducting ongoing scientific research for benefits of all humanity.
Download or read book Rigorous Proofs for Riemann Hypothesis Polignac s and Twin Prime Conjectures in 2020 written by John Yuk Ching Ting and published by . This book was released on 2020-01-15 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Rigorous proofs for Riemann hypothesis (and explaining the two types of Gram points in Riemann zeta function), Polignac's and Twin prime conjectures now explicitly explained in one research paper using concepts such as Broken Symmetry and Perfect Symmetry in 2020. Proceeds from the purchase of this book will go towards conducting ongoing scientific research for benefits of all humanity." -- Author.
Download or read book Riemann s Influence on Modern Medicine Physiology Science Mathematics and Religion written by John Ting and published by Independently Published. This book was released on 2019-08-14 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book caters for the general public. Solving Riemann hypothesis proposed by famous German mathematician Bernhard Riemann in 1859 has resulted in important Fundamental Laws for Living and Nonliving Things. Open problems in Number theory of Riemann hypothesis, Polignac's and Twin prime conjectures have been unsolved for over 150 years. They are finally solved when sine qua non treated as Incompletely Predictable problems in 2019. Riemann hypothesis belongs to one of seven Millennium Prize Problems in mathematics stated by Clay Mathematics Institute on May 24, 2000. The author serendipitously cross path with the Institute's website Riemann Hypothesis on Thursday March 10, 2016 in permanently altering its information content from previous incorrect [sic] "...the first 10,000,000,000 solutions" to current correct [sic] "...the first 10,000,000,000,000 solutions". Configured as containing useful materials on Medicine, Physiology and Religion, Chapters 1 to 10 as beginning part concentrate on materials related to Alphabet and Language of Science emphasizing its important role in the two innovative 'Spherical Model of Science' and 'Spherical Model of Numbers'. Chapters 11 to 15 contain introductory materials for our three open problems with Chapter 11 explaining the important Fundamental Laws. Chapters 16 to 21 concentrate on describing in layman's terms how rigorous proofs for our three open problems are derived as two complete research papers first published in viXra (reproduced in Appendix 1 and 2). Chapters 22 to 25 as end part contain materials that speculate on important role of Umbral ("Shadow"), Mathieu and Monstrous Moonshine in String theory potentially uniting Einstein General Relativity and Quantum gravity, and refute a common misconception that solving Riemann hypothesis will lead to E-Commerce apocalypse. The exotic A228186 Hybrid integer is also outlined in this book.
Download or read book Dr Riemann s Zeros written by Karl Sabbagh and published by Atlantic Books (UK). This book was released on 2003 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1859 Bernhard Riemann, a shy German mathematician, gave an answer to a problem that had long puzzled mathematicians. Although he couldn't provide a proof, Riemann declared that his solution was 'very probably' true. For the next one hundred and fifty years, the world's mathematicians have longed to confirm the Riemann hypothesis. So great is the interest in its solution that in 2001, an American foundation offered a million-dollar prize to the first person to demonstrate that the hypothesis is correct. In this book, Karl Sabbagh makes accessible even the airiest peaks of maths and paints vivid portraits of the people racing to solve the problem. Dr. Riemann's Zeros is a gripping exploration of the mystery at the heart of our counting system.
Download or read book Elementary Number Theory in Nine Chapters written by James J. Tattersall and published by Cambridge University Press. This book was released on 1999-10-14 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to serve as a one-semester introductory course in number theory. Throughout the book a historical perspective has been adopted and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.
Download or read book The Prime Number Theorem written by G. J. O. Jameson and published by Cambridge University Press. This book was released on 2003-04-17 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.
Download or read book A Pythagorean Introduction to Number Theory written by Ramin Takloo-Bighash and published by Springer. This book was released on 2018-11-26 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Right triangles are at the heart of this textbook’s vibrant new approach to elementary number theory. Inspired by the familiar Pythagorean theorem, the author invites the reader to ask natural arithmetic questions about right triangles, then proceeds to develop the theory needed to respond. Throughout, students are encouraged to engage with the material by posing questions, working through exercises, using technology, and learning about the broader context in which ideas developed. Progressing from the fundamentals of number theory through to Gauss sums and quadratic reciprocity, the first part of this text presents an innovative first course in elementary number theory. The advanced topics that follow, such as counting lattice points and the four squares theorem, offer a variety of options for extension, or a higher-level course; the breadth and modularity of the later material is ideal for creating a senior capstone course. Numerous exercises are included throughout, many of which are designed for SageMath. By involving students in the active process of inquiry and investigation, this textbook imbues the foundations of number theory with insights into the lively mathematical process that continues to advance the field today. Experience writing proofs is the only formal prerequisite for the book, while a background in basic real analysis will enrich the reader’s appreciation of the final chapters.
Download or read book The Vertical Generalization of the Binary Goldbach s Conjecture as Applied on Iterative Primes with Recursive Prime Indexes i primeths written by Andrei-Lucian Drăgoi and published by Infinite Study. This book was released on with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: This article proposes a synthesized classification of some Goldbach-like conjectures, including those which are “stronger” than the Binary Goldbach’s Conjecture (BGC) and launches a new generalization of BGC briefly called “the Vertical Binary Goldbach’s Conjecture” (VBGC), which is essentially a metaconjecture, as VBGC states an infinite number of conjectures stronger than BGC, which all apply on “iterative” primes with recursive prime indexes (i-primeths).
Download or read book An introduction to the theory of numbers written by Ivan Niven and published by . This book was released on 1993 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Invitation to Abstract Mathematics written by Béla Bajnok and published by Springer Nature. This book was released on 2020-10-27 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
Download or read book Heights in Diophantine Geometry written by Enrico Bombieri and published by Cambridge University Press. This book was released on 2006 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a bridge between the classical theory and modern approach via arithmetic geometry.
Download or read book Riemann s Zeta Function written by Harold M. Edwards and published by Courier Corporation. This book was released on 2001-01-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix.
Download or read book Math Talks for Undergraduates written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many years, Serge Lang has given talks on selected items in mathematics which could be extracted at a level understandable by those who have had calculus. Written in a conversational tone, Lang now presents a collection of those talks as a book covering such topics as: prime numbers, the abc conjecture, approximation theorems of analysis, Bruhat-Tits spaces, and harmonic and symmetric polynomials. Each talk is written in a lively and informal style meant to engage any reader looking for further insight into mathematics.
Download or read book The Book of Prime Number Records written by Paulo Ribenboim and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.
Download or read book Unsolved Problems in Number Theory written by Richard Guy and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Second edition sold 2241 copies in N.A. and 1600 ROW. New edition contains 50 percent new material.
Download or read book Topics in Number Theory written by Amir Hossein Parvardi and published by . This book was released on 2018-09-11 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This challenging book contains fundamentals of elementary number theory as well as a huge number of solved problems and exercises. The authors, who are experienced mathematical olympiad teachers, have used numerous solved problems and examples in the process of presenting the theory. Another point which has made this book self-contained is that the authors have explained everything from the very beginning, so that the reader does not need to use other sources for definitions, theorems, or problems. On the other hand, Topics in Number Theory introduces and develops advanced subjects in number theory which may not be found in other similar number theory books; for instance, chapter 5 presents Thue's lemma, Vietta jumping, and lifting the exponent lemma (among other things) which are unique in the sense that no other book covers all such topics in one place. As a result, this book is suitable for both beginners and advanced-level students in olympiad number theory, math teachers, and in general whoever is interested in learning number theory.For more information about the book, please refer to https://TopicsInNumberTheory.com.
Download or read book Prime Numbers written by Richard Crandall and published by Springer Science & Business Media. This book was released on 2006-04-07 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field