EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Riesz Spaces II

    Book Details:
  • Author : A.C. Zaanen
  • Publisher : Elsevier
  • Release : 1983-05-01
  • ISBN : 0080960189
  • Pages : 733 pages

Download or read book Riesz Spaces II written by A.C. Zaanen and published by Elsevier. This book was released on 1983-05-01 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt: While Volume I (by W.A.J. Luxemburg and A.C. Zaanen, NHML Volume 1, 1971) is devoted to the algebraic aspects of the theory, this volume emphasizes the analytical theory of Riesz spaces and operators between these spaces. Though the numbering of chapters continues on from the first volume, this does not imply that everything covered in Volume I is required for this volume, however the two volumes are to some extent complementary.

Book Riesz Spaces

    Book Details:
  • Author : Adriaan Cornelis Zaanen
  • Publisher : Elsevier
  • Release : 1971
  • ISBN : 0444866264
  • Pages : 734 pages

Download or read book Riesz Spaces written by Adriaan Cornelis Zaanen and published by Elsevier. This book was released on 1971 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Locally Solid Riesz Spaces with Applications to Economics

Download or read book Locally Solid Riesz Spaces with Applications to Economics written by Charalambos D. Aliprantis and published by American Mathematical Soc.. This book was released on 2003 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Riesz space (or a vector lattice) is an ordered vector space that is simultaneously a lattice. A topological Riesz space (also called a locally solid Riesz space) is a Riesz space equipped with a linear topology that has a base consisting of solid sets. Riesz spaces and ordered vector spaces play an important role in analysis and optimization. They also provide the natural framework for any modern theory of integration. This monograph is the revised edition of the authors' bookLocally Solid Riesz Spaces (1978, Academic Press). It presents an extensive and detailed study (with complete proofs) of topological Riesz spaces. The book starts with a comprehensive exposition of the algebraic and lattice properties of Riesz spaces and the basic properties of order bounded operatorsbetween Riesz spaces. Subsequently, it introduces and studies locally solid topologies on Riesz spaces-- the main link between order and topology used in this monograph. Special attention is paid to several continuity properties relating the order and topological structures of Riesz spaces, the most important of which are the Lebesgue and Fatou properties. A new chapter presents some surprising applications of topological Riesz spaces to economics. In particular, it demonstrates that theexistence of economic equilibria and the supportability of optimal allocations by prices in the classical economic models can be proven easily using techniques At the end of each chapter there are exercises that complement and supplement the material in the chapter. The last chapter of the book presentscomplete solutions to all exercises. Prerequisites are the fundamentals of real analysis, measure theory, and functional analysis. This monograph will be useful to researchers and graduate students in mathematics. It will also be an important reference tool to mathematical economists and to all scientists and engineers who use order structures in their research.

Book Introduction to Operator Theory in Riesz Spaces

Download or read book Introduction to Operator Theory in Riesz Spaces written by Adriaan C. Zaanen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the thirties a considerable number of books on func tional analysis has been published. Among the first ones were those by M. H. Stone on Hilbert spaces and by S. Banach on linear operators, both from 1932. The amount of material in the field of functional analysis (in cluding operator theory) has grown to such an extent that it has become impossible now to include all of it in one book. This holds even more for text books. Therefore, authors of textbooks usually restrict themselves to normed spaces (or even to Hilbert space exclusively) and linear operators in these spaces. In more advanced texts Banach algebras and (or) topological vector spaces are sometimes included. It is only rarely, however, that the notion of order (partial order) is explicitly mentioned (even in more advanced exposi tions), although order structures occur in a natural manner in many examples (spaces of real continuous functions or spaces of measurable function~). This situation is somewhat surprising since there exist important and illuminating results for partially ordered vector spaces, in . particular for the case that the space is lattice ordered. Lattice ordered vector spaces are called vector lattices or Riesz spaces. The first results go back to F. Riesz (1929 and 1936), L. Kan torovitch (1935) and H. Freudenthal (1936).

Book Pre Riesz Spaces

    Book Details:
  • Author : Anke Kalauch
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2018-11-19
  • ISBN : 3110475448
  • Pages : 443 pages

Download or read book Pre Riesz Spaces written by Anke Kalauch and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-19 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph develops the theory of pre-Riesz spaces, which are the partially ordered vector spaces that embed order densely into Riesz spaces. Concepts from Riesz space theory such as disjointness, ideals, and bands are extended to pre-Riesz spaces. The analysis revolves around embedding techniques, including the Riesz completion and the functional representation. In the same spirit, norms and topologies on a pre-Riesz space and their extensions to the Riesz completion are examined. The generalized concepts are used to investigate disjointness preserving operators on pre-Riesz spaces and related notions. The monograph presents recent results as well as being an accessible introduction to the theory of partially ordered vector spaces and positive operators. Contents A primer on ordered vector spaces Embeddings, covers, and completions Seminorms on pre-Riesz spaces Disjointness, bands, and ideals in pre-Riesz spaces Operators on pre-Riesz spaces

Book Kurzweil Henstock Integral in Riesz spaces

Download or read book Kurzweil Henstock Integral in Riesz spaces written by Antonio Boccuto and published by Bentham Science Publishers. This book was released on 2010-04-02 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This Ebook is concerned with both the theory of the Kurzweil-Henstock integral and the basic facts on Riesz spaces. Moreover, even the so-called Sipos integral, which has several applications in economy, is illustrated. The aim of this Ebook is two-fold. "

Book Pre Riesz Spaces

    Book Details:
  • Author : Anke Kalauch
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2018-11-19
  • ISBN : 3110476290
  • Pages : 318 pages

Download or read book Pre Riesz Spaces written by Anke Kalauch and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-19 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph develops the theory of pre-Riesz spaces, which are the partially ordered vector spaces that embed order densely into Riesz spaces. Concepts from Riesz space theory such as disjointness, ideals, and bands are extended to pre-Riesz spaces. The analysis revolves around embedding techniques, including the Riesz completion and the functional representation. In the same spirit, norms and topologies on a pre-Riesz space and their extensions to the Riesz completion are examined. The generalized concepts are used to investigate disjointness preserving operators on pre-Riesz spaces and related notions. The monograph presents recent results as well as being an accessible introduction to the theory of partially ordered vector spaces and positive operators. Contents A primer on ordered vector spaces Embeddings, covers, and completions Seminorms on pre-Riesz spaces Disjointness, bands, and ideals in pre-Riesz spaces Operators on pre-Riesz spaces

Book Positive Operators  Riesz Spaces  and Economics

Download or read book Positive Operators Riesz Spaces and Economics written by Charalambos D. Aliprantis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last fifty years advanced mathematical tools have become an integral part in the development of modern economic theory. Economists continue to invoke sophisticated mathematical techniques and ideas in order to understand complex economic and social problems. In the last ten years the theory of Riesz spaces (vector lattices) has been successfully applied to economic theory. By now it is understood relatively well that the lattice structure of Riesz spaces can be employed to capture and interpret several economic notions. On April 16-20, 1990, a small conference on Riesz Spaces, Positive Opera tors, and their Applications to Economics took place at the California Institute of Technology. The purpose of the conference was to bring mathematicians special ized in Riesz Spaces and economists specialized in General Equilibrium together to exchange ideas and advance the interdisciplinary cooperation between math ematicians and economists. This volume is a collection of papers that represent the talks and discussions of the participants at the week-long conference. We take this opportunity to thank all the participants of the conference, especially those whose articles are contained in this volume. We also greatly ap preciate the financial support provided by the California Institute of Technology. In particular, we express our sincerest thanks to David Grether, John Ledyard, and David Wales for their support. Finally, we would like to thank Susan Davis, Victoria Mason, and Marge D'Elia who handled the delicate logistics for the smooth running of the confer ence.

Book Riesz Spaces

    Book Details:
  • Author : W.A.J. Luxemburg
  • Publisher : Elsevier
  • Release : 2000-04-01
  • ISBN : 008095183X
  • Pages : 527 pages

Download or read book Riesz Spaces written by W.A.J. Luxemburg and published by Elsevier. This book was released on 2000-04-01 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Riesz Spaces

Book Topological Riesz Spaces and Measure Theory

Download or read book Topological Riesz Spaces and Measure Theory written by D. H. Fremlin and published by Cambridge University Press. This book was released on 1974-02-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr Fremlin's aim in writing this book is to identify those concepts in measure theory which are most relevant to functional analysis and to integrate them into functional analysis in a way consistent with that subject's structure and habits of thought. This is achieved by approaching measure theory through the properties of Riesz spaces and especially topological Riesz spaces.

Book Probability in Banach Spaces II

Download or read book Probability in Banach Spaces II written by A. Beck and published by Springer. This book was released on 2006-11-14 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Frames and Riesz Bases

Download or read book An Introduction to Frames and Riesz Bases written by Ole Christensen and published by Birkhäuser. This book was released on 2016-05-24 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen’s An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." — Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005

Book Theory of Function Spaces II

    Book Details:
  • Author : Hans Triebel
  • Publisher : Springer Science & Business Media
  • Release : 1992-04-02
  • ISBN : 9783764326395
  • Pages : 388 pages

Download or read book Theory of Function Spaces II written by Hans Triebel and published by Springer Science & Business Media. This book was released on 1992-04-02 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Function Spaces II deals with the theory of function spaces of type Bspq and Fspq as it stands at the present. These two scales of spaces cover many well-known function spaces such as Hölder-Zygmund spaces, (fractional) Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces, spaces of BMO-type and local approximation spaces which are closely connected with Morrey-Campanato spaces. Theory of Function Spaces II is self-contained, although it may be considered an update of the author’s earlier book of the same title. The book’s 7 chapters start with a historical survey of the subject, and then analyze the theory of function spaces in Rn and in domains, applications to (exotic) pseudo-differential operators, and function spaces on Riemannian manifolds. ------ Reviews The first chapter deserves special attention. This chapter is both an outstanding historical survey of function spaces treated in the book and a remarkable survey of rather different techniques developed in the last 50 years. It is shown that all these apparently different methods are only different ways of characterizing the same classes of functions. The book can be best recommended to researchers and advanced students working on functional analysis. - Zentralblatt MATH

Book Cones and Duality

    Book Details:
  • Author : Charalambos D. Aliprantis
  • Publisher : American Mathematical Soc.
  • Release : 2007-06-12
  • ISBN : 0821841467
  • Pages : 298 pages

Download or read book Cones and Duality written by Charalambos D. Aliprantis and published by American Mathematical Soc.. This book was released on 2007-06-12 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordered vector spaces and cones made their debut in mathematics at the beginning of the twentieth century. They were developed in parallel (but from a different perspective) with functional analysis and operator theory. Before the 1950s, ordered vector spaces appeared in the literature in a fragmented way. Their systematic study began around the world after 1950 mainly through the efforts of the Russian, Japanese, German, and Dutch schools. Since cones are being employed to solve optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a variety of applied problems appearing in several diverse areas, such as engineering, econometrics, and the social sciences. For this reason this theory plays a prominent role not only in functional analysis but also in a wide range of applications. This is a book about a modern perspective on cones and ordered vector spaces. It includes material that has not been presented earlier in a monograph or a textbook. With many exercises of varying degrees of difficulty, the book is suitable for graduate courses. Most of the new topics currently discussed in the book have their origins in problems from economics and finance. Therefore, the book will be valuable to any researcher and graduate student who works in mathematics, engineering, economics, finance, and any other field that uses optimization techniques.

Book Ordered Structures and Applications

Download or read book Ordered Structures and Applications written by Marcel de Jeu and published by Birkhäuser. This book was released on 2016-09-22 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of Positivity VII, held from 22-26 July 2013, in Leiden, the Netherlands. Positivity is the mathematical field concerned with ordered structures and their applications in the broadest sense of the word. A biyearly series of conferences is devoted to presenting the latest developments in this lively and growing discipline. The lectures at the conference covered a broad spectrum of topics, ranging from order-theoretic approaches to stochastic processes, positive solutions of evolution equations and positive operators on vector lattices, to order structures in the context of algebras of operators on Hilbert spaces. The contributions in the book reflect this variety and appeal to university researchers in functional analysis, operator theory, measure and integration theory and operator algebras. Positivity VII was also the Zaanen Centennial Conference to mark the 100th birth year of Adriaan Cornelis Zaanen, who held the chair of Analysis in Leiden for more than 25 years and was one of the leaders in the field during his lifetime.

Book Topics in Contemporary Mathematical Analysis and Applications

Download or read book Topics in Contemporary Mathematical Analysis and Applications written by Hemen Dutta and published by CRC Press. This book was released on 2020-12-22 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. The readers will find developments concerning the topics presented to a reasonable extent with various new problems for further study. Each chapter carefully presents the related problems and issues, methods of solutions, and their possible applications or relevancies in other scientific areas. Aims at enriching the understanding of methods, problems, and applications Offers an understanding of research problems by presenting the necessary developments in reasonable details Discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems This book is written for individual researchers, educators, students, and department libraries.

Book Problems in Operator Theory

Download or read book Problems in Operator Theory written by Yuri A. Abramovich and published by American Mathematical Soc.. This book was released on 2002 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains complete solutions to the more than six hundred exercises in the authors' book: Invitation to operator theory--foreword.