Download or read book Ridge Fuzzy Regression Modelling for Solving Multicollinearity written by Hyoshin Kim and published by Infinite Study. This book was released on with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper proposes an a-level estimation algorithm for ridge fuzzy regression modeling, addressing the multicollinearity phenomenon in the fuzzy linear regression setting.
Download or read book Fuzzy Statistical Inferences Based on Fuzzy Random Variables written by Gholamreza Hesamian and published by CRC Press. This book was released on 2022-02-24 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most commonly used techniques for the most statistical inferences based on fuzzy data. It brings together many of the main ideas used in statistical inferences in one place, based on fuzzy information including fuzzy data. This book covers a much wider range of topics than a typical introductory text on fuzzy statistics. It includes common topics like elementary probability, descriptive statistics, hypothesis tests, one-way ANOVA, control-charts, reliability systems and regression models. The reader is assumed to know calculus and a little fuzzy set theory. The conventional knowledge of probability and statistics is required. Key Features: Includes example in Mathematica and MATLAB. Contains theoretical and applied exercises for each section. Presents various popular methods for analyzing fuzzy data. The book is suitable for students and researchers in statistics, social science, engineering, and economics, and it can be used at graduate and P.h.D level.
Download or read book Fuzzy Regression Analysis written by Janusz Kacprzyk and published by Physica. This book was released on 1992-08-27 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression analysis is a relatively simple yet extremely useful and widely employed tool for determining relationship between some variables on the basis of some observed values taken by these variables. Fuzzy regression analysis has been recently deviced to accomodate in the framework of regression analysis vaguely specified data which are omnipresent in many applications, notably in all areas where human judgements are used. Fuzzy sets theory provides here proper tools. This book is a collection of papers written by virtually all major contributors to fuzzy regression. Its main issue is that vague, imprecise, etc. data may now be used in regression analysis. This is new. Apart from this it gives an extensive coverage of the whole field of fuzzy regression, both in a strictly mathematical and applicational perspective. Most approaches are algorithmic, and can be readily implemented. Information on software is provided.
Download or read book Understanding Regression Analysis written by Larry D. Schroeder and published by SAGE Publications. This book was released on 2016-11-08 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Regression Analysis: An Introductory Guide by Larry D. Schroeder, David L. Sjoquist, and Paula E. Stephan presents the fundamentals of regression analysis, from its meaning to uses, in a concise, easy-to-read, and non-technical style. It illustrates how regression coefficients are estimated, interpreted, and used in a variety of settings within the social sciences, business, law, and public policy. Packed with applied examples and using few equations, the book walks readers through elementary material using a verbal, intuitive interpretation of regression coefficients, associated statistics, and hypothesis tests. The Second Edition features updated examples and new references to modern software output.
Download or read book Regression and Other Stories written by Andrew Gelman and published by Cambridge University Press. This book was released on 2021 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical approach to using regression and computation to solve real-world problems of estimation, prediction, and causal inference.
Download or read book Modern Statistics with R written by Måns Thulin and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Download or read book Advances in Natural Computation Fuzzy Systems and Knowledge Discovery written by Quan Xie and published by Springer Nature. This book was released on 2022-01-04 with total page 1454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of papers on the recent progresses in the state of the art in natural computation, fuzzy systems and knowledge discovery. The book can be useful for researchers, including professors, graduate students, as well as R & D staff in the industry, with a general interest in natural computation, fuzzy systems and knowledge discovery. The work printed in this book was presented at the 2021 17th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2021, 24–26 July 2021, Guiyang, China). All papers were rigorously peer-reviewed by experts in the areas.
Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Download or read book Bayesian and Frequentist Regression Methods written by Jon Wakefield and published by Springer Science & Business Media. This book was released on 2013-01-04 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines.
Download or read book Geographically Weighted Regression written by A. Stewart Fotheringham and published by John Wiley & Sons. This book was released on 2003-02-21 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geographical Weighted Regression (GWR) is a new local modelling technique for analysing spatial analysis. This technique allows local as opposed to global models of relationships to be measured and mapped. This is the first and only book on this technique, offering comprehensive coverage on this new 'hot' topic in spatial analysis. * Provides step-by-step examples of how to use the GWR model using data sets and examples on issues such as house price determinants, educational attainment levels and school performance statistics * Contains a broad discussion of and basic concepts on GWR through to ideas on statistical inference for GWR models * uniquely features accompanying author-written software that allows users to undertake sophisticated and complex forms of GWR within a user-friendly, Windows-based, front-end (see book for details).
Download or read book Generalized Linear Models for Insurance Rating written by Mark Goldburd and published by . This book was released on 2016-06-08 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Modeling Uncertainty with Fuzzy Logic written by Asli Celikyilmaz and published by Springer. This book was released on 2009-04-01 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world we live in is pervaded with uncertainty and imprecision. Is it likely to rain this afternoon? Should I take an umbrella with me? Will I be able to find parking near the campus? Should I go by bus? Such simple questions are a c- mon occurrence in our daily lives. Less simple examples: What is the probability that the price of oil will rise sharply in the near future? Should I buy Chevron stock? What are the chances that a bailout of GM, Ford and Chrysler will not s- ceed? What will be the consequences? Note that the examples in question involve both uncertainty and imprecision. In the real world, this is the norm rather than exception. There is a deep-seated tradition in science of employing probability theory, and only probability theory, to deal with uncertainty and imprecision. The mon- oly of probability theory came to an end when fuzzy logic made its debut. H- ever, this is by no means a widely accepted view. The belief persists, especially within the probability community, that probability theory is all that is needed to deal with uncertainty. To quote a prominent Bayesian, Professor Dennis Lindley, “The only satisfactory description of uncertainty is probability.
Download or read book Applications of Fuzzy Optimization and Fuzzy Decision Making written by Vassilis C Gerogiannis and published by . This book was released on 2021-10-26 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the Special Issue "Applications of Fuzzy Optimization and Fuzzy Decision Making" is to expand the applicability of fuzzy optimization and decision making for solving various types of problems in the areas of economics, business, engineering, management, operations research, etc. Any experimental research or empirical study of theoretical developments in fuzzy optimization and decision making is highly welcome. Additionally, research papers presenting solution methods and/or studying their computational complexity, and proposing new algorithms to solve fuzzy optimization and decision making problems, in an effective and efficient manner, are also welcome. We are looking forward to receive innovative approaches that apply, in practical settings, state-of-the art mathematical/algorithmic techniques from fuzzy technology, computational intelligence and soft-computing methodologies, with the aim to offer robust solutions for complex optimization and decision making problems characterized by non-probabilistic uncertainty, vagueness, ambiguity, and hesitation. Such type of papers will address the suitability, validity, and advantages of using fuzzy technologies and the enhancement of them using intelligent methods to treat real-life problems from various disciplines.
Download or read book How Fuzzy Concepts Contribute to Machine Learning written by Mahdi Eftekhari and published by Springer Nature. This book was released on 2022-02-15 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces some contemporary approaches on the application of fuzzy and hesitant fuzzy sets in machine learning tasks such as classification, clustering and dimension reduction. Many situations arise in machine learning algorithms in which applying methods for uncertainty modeling and multi-criteria decision making can lead to a better understanding of algorithms behavior as well as achieving good performances. Specifically, the present book is a collection of novel viewpoints on how fuzzy and hesitant fuzzy concepts can be applied to data uncertainty modeling as well as being used to solve multi-criteria decision making challenges raised in machine learning problems. Using the multi-criteria decision making framework, the book shows how different algorithms, rather than human experts, are employed to determine membership degrees. The book is expected to bring closer the communities of pure mathematicians of fuzzy sets and data scientists.
Download or read book Exploratory Analysis of Metallurgical Process Data with Neural Networks and Related Methods written by C. Aldrich and published by Elsevier. This book was released on 2002-04-19 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is concerned with the analysis and interpretation of multivariate measurements commonly found in the mineral and metallurgical industries, with the emphasis on the use of neural networks.The book is primarily aimed at the practicing metallurgist or process engineer, and a considerable part of it is of necessity devoted to the basic theory which is introduced as briefly as possible within the large scope of the field. Also, although the book focuses on neural networks, they cannot be divorced from their statistical framework and this is discussed in length. The book is therefore a blend of basic theory and some of the most recent advances in the practical application of neural networks.
Download or read book Principal Component Analysis written by I.T. Jolliffe and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.