EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Review and Ranking of NDA Techniques to Determine Plutonium Content in Spent Fuel

Download or read book Review and Ranking of NDA Techniques to Determine Plutonium Content in Spent Fuel written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A number of efforts are under way to improve nondestructive assay (NDA) techniques for spent nuclear fuel (SNF) safeguard applications. These efforts have largely focused on advancing individual NDA approaches to assay plutonium content. Although significant improvements have been made in NDA techniques, relatively little work has been done to thoroughly and systematically compare the methods. A comparative review of the relative strengths and weaknesses of current NDA techniques brings a new perspective to guide future research. To gauge the practicality and effectiveness of the various relevant NDA approaches, criteria have been developed from two broad categories: functionality and operability. The functionality category includes accuracy estimates, measurement time, plutonium verification capabilities, and assembly or fuel rod assay. Since SNF composition changes with operational history and cooling times, the viability of certain NDA approaches will also change over time. While active interrogation approaches will benefit from reduced background radiation, passive assays will lose the information contained in short-lived isotopes. Therefore, the expected assay accuracy as a function of time is considered. The operability category attempts to gauge the challenges associated with the application of different NDA techniques. This category examines the NDA deploy-ability, measurement capabilities and constraints in spent fuel pools, required on-site facilities, NDA technique synergies, and the extent to which the measurements are obtrusive to the facility. Each topic listed in the categories will be given a numerical score used to rank the different NDA approaches. While the combined numerical score of each technique is informative, the individual-topic scoring will allow for a more-tailored ranking approach. Since the needs and tools of the International Atomic Energy Agency differ from those of a recycling facility, the best assay technique may change with users and SNF characteristics. This ranking system will also examine the merits of a staged inspection with quick measurements followed by more-accurate assays of suspicious SNF. The final results of this ranking process will be used to guide the NDA safeguards research at Oak Ridge National Laboratory.

Book Determination of Plutonium Content in Spent Fuel with Nondestructive Assay

Download or read book Determination of Plutonium Content in Spent Fuel with Nondestructive Assay written by and published by . This book was released on 2009 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are a variety of reasons for quantifying plutonium (Pu) in spent fuel such as independently verifying the Pu content declared by a regulated facility, making shipper/receiver mass declarations, and quantifying the input mass at a reprocessing facility. As part of the Next Generation Safeguards Initiative, NA-241 has recently funded a multilab/university collaboration to determine the elemental Pu mass in spent fuel assemblies. This research effort is anticipated to be a five year effort: the first part of which is a two years Monte Carlo modeling effort to integrate and down-select among 13 nondestructive assay (NDA) technologies, followed by one year for fabricating instruments and then two years for measuring spent fuel. This paper gives a brief overview of the approach being taken for the Monte Carlo research effort. In addition, preliminary results for the first NDA instrument studied in detail, delayed neutron detection, will be presented. In order to cost effectively and robustly model the performance of several NDA techniques, an"assembly library" was created that contains a diverse range of pressurized water reactor spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future, diversion scenarios that capture a range of possible rod removal options, spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. Integration is being designed into this study from the beginning since it is expected that the best performance will be obtained by combining a few NDA techniques. The performance of each instrument will be quantified for the full assembly library in three different media: air, water and borated water. In this paper the preliminary capability of delayed neutron detection will be quantified for the spent fuel library for all three media. The 13 NDA techniques being researched are the following: Delayed Gamma, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Passive Neutron Albedo Reactivity, Self-integration Neutron Resonance Densitometry, Total Neutron (Gross Neutron), X-Ray Fluorescence, 252Cf Interrogation with Prompt Neutron Detection.

Book An Integrated Approach for Determining Plutonium Mass in Spent Fuel Assemblies with Nondestructive Assay

Download or read book An Integrated Approach for Determining Plutonium Mass in Spent Fuel Assemblies with Nondestructive Assay written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: There are a variety of reasons for quantifying plutonium (Pu) in spent fuel. Below, five motivations are listed: (1) To verify the Pu content of spent fuel without depending on unverified information from the facility, as requested by the IAEA ('independent verification'). New spent fuel measurement techniques have the potential to allow the IAEA to recover continuity of knowledge and to better detect diversion. (2) To assure regulators that all of the nuclear material of interest leaving a nuclear facility actually arrives at another nuclear facility ('shipper/receiver'). Given the large stockpile of nuclear fuel at reactor sites around the world, it is clear that in the coming decades, spent fuel will need to be moved to either reprocessing facilities or storage sites. Safeguarding this transportation is of significant interest. (3) To quantify the Pu in spent fuel that is not considered 'self-protecting.' Fuel is considered self-protecting by some regulatory bodies when the dose that the fuel emits is above a given level. If the fuel is not self-protecting, then the Pu content of the fuel needs to be determined and the Pu mass recorded in the facility's accounting system. This subject area is of particular interest to facilities that have research-reactor spent fuel or old light-water reactor (LWR) fuel. It is also of interest to regulators considering changing the level at which fuel is considered self-protecting. (4) To determine the input accountability value at an electrochemical processing facility. It is not expected that an electrochemical reprocessing facility will have an input accountability tank, as is typical in an aqueous reprocessing facility. As such, one possible means of determining the input accountability value is to measure the Pu content in the spent fuel that arrives at the facility. (5) To fully understand the composition of the fuel in order to efficiently and safely pack spent fuel into a long-term repository. The NDA of spent fuel can be part of a system that cost-effectively meets the burnup credit needs of a repository. Behind each of these reasons is a regulatory structure with MC & A requirements. In the case of the IAEA, the accountable quantity is elemental plutonium. The material in spent fuel (fissile isotopes, fission products, etc.) emits signatures that provide information about the content and history of the fuel. A variety of nondestructive assay (NDA) techniques are available to quantify these signatures. The effort presented in this paper is investigation of the capabilities of 12 NDA techniques. For these 12, none is conceptually capable of independently determining the Pu content in a spent fuel assembly while at the same time being able to detect the diversion of a significant quantity of rods. For this reason the authors are investigating the capability of 12 NDA techniques with the end goal of integrating a few techniques together into a system that is capable of measuring Pu mass in an assembly. The work described here is the beginning of what is anticipated to be a five year effort: (1) two years of modeling to select the best technologies, (2) one year fabricating instruments and (3) two years measuring spent fuel. This paper describes the first two years of this work. In order to cost effectively and robustly model the performance of the 12 NDA techniques, an 'assembly library' was created. The library contains the following: (a) A diverse range of PWR spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future. (b) Diversion scenarios that capture a range of possible rod removal options. (c) The spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. It is our intention to make this library available to other researchers in the field for inter-comparison purposes. The performance of each instrument will be quantified for the full assembly library for measurements in three different media: air, water and borated water. The 12 NDA techniques being researched are the following: Delayed Gamma, Delayed Neutrons, Differential Die-Away, Lead Slowing Down Spectrometer, Neutron Multiplicity, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Passive Neutron Albedo Reactivity, Self-integration Neutron Resonance Densitometry, Total Neutron (Gross Neutron), X-Ray Fluorescence, 252Cf Interrogation with Prompt Neutron Detection.

Book Determining Plutonium in Spent Fuel with Nondestructive Assay Techniques

Download or read book Determining Plutonium in Spent Fuel with Nondestructive Assay Techniques written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: There are a variety of motivations for quantifying plutonium in used (spent) fuel assemblies by means of nondestructive assay including the following: shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories or fuel storage facilities. Twelve NDA techniques were identified that provide information about the composition of an assembly. Unfortunately, none of these techniques is capable of determining the Pu mass in an assembly on its own. However, it is expected that the Pu mass can be quantified by combining a few of the techniques. Determining which techniques to combine and estimating the expected performance of such a system is the purpose of the research effort recently begun. The research presented here is a complimentarily experimental effort. This paper will focus on experimental results of one of the twelve non-destructive assay techniques - passive neutron albedo reactivity. The passive neutron albedo reactivity techniques work by changing the multiplication the pin experiences between two separate measurements. Since a single spent fuel pin has very little multiplication, this is a challenging measurement situation for the technique. Singles and Doubles neutron count rate were measured at Oak Ridge National Laboratory for three different burnup pins to test the capability of the passive neutron albedo reactivity technique.

Book Determining Plutonium Mass in Spent Fuel with Non destructive Assay Techniques   NGSU Research Overview and Update on 6 NDA Techniques

Download or read book Determining Plutonium Mass in Spent Fuel with Non destructive Assay Techniques NGSU Research Overview and Update on 6 NDA Techniques written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This poster is one of two complementary posters. The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel assemblies with non-destructive assay (NDA). This research effort has the goal of quantifying the capability of 14 NDA techniques as well as training a future generation of safeguards practitioners. By November of 2010, we will be 1.5 years into the first phase (2.5 years) of work. This first phase involves primarily Monte Carlo modelling while the second phase (also 2.5 years) will focus on experimental work. The goal of phase one is to quantify the detection capability of the various techniques for the benefit of safeguard technology developers, regulators, and policy makers as well as to determine what integrated techniques merit experimental work, We are considering a wide range of possible technologies since our research horizon is longer term than the focus of most regulator bodies. The capability of all of the NDA techniques will be determined for a library of 64 17 x 17 PWR assemblies [burnups (15, 30, 45, 60 GWd/tU), initial enrichments (2, 3, 4, 5%) and cooling times (1, 5, 20, 80 years)]. The burnup and cooling time were simulated with each fuel pin being comprised of four radial regions. In this paper an overview of the purpose will be given as well as a technical update on the following 6 neutron techniques: 252Cf Interrogation with Prompt Neutron Detection, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Passive Neutron Albedo Reactivity, Self-Integration Neutron Resonance Densitometry. The technical update will quantify the anticipated performance of each technique for the 64 assemblies of the spent fuel library.

Book Determination of Total Pu Content in a Spent Fuel Assembly by Measuring Passive Neutron Count Rate and Multiplication with the Differential Die Away Instrument

Download or read book Determination of Total Pu Content in a Spent Fuel Assembly by Measuring Passive Neutron Count Rate and Multiplication with the Differential Die Away Instrument written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A key objective of the Next Generation Safeguards Initiative (NGSI) is to evaluate and develop non-destructive assay (NDA) techniques to determine the elemental plutonium content in a commercial-grade nuclear spent fuel assembly (SFA) [1]. Within this framework, we investigate by simulation a novel analytical approach based on combined information from passive measurement of the total neutron count rate of a SFA and its multiplication determined by the active interrogation using an instrument based on a Differential Die-Away technique (DDA). We use detailed MCNPX simulations across an extensive set of SFA characteristics to establish the approach and demonstrate its robustness. It is predicted that Pu content can be determined by the proposed method to a few %.

Book Determining Spent Nuclear Fuel s Plutonium Content  Initial Enrichment  Burnup  and Cooling Time

Download or read book Determining Spent Nuclear Fuel s Plutonium Content Initial Enrichment Burnup and Cooling Time written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Next Generation of Safeguards Initiative is examining nondestructive assay techniques to determine the total plutonium content in spent nuclear fuel. The goal of this research was to develop new techniques that can independently verify the plutonium content in a spent fuel assembly without relying on an operator's declarations. Fundamentally this analysis sought to answer the following questions: (1) do spent fuel assemblies contain unique, identifiable isotopic characteristics as a function of their burnup, cooling time, and initial enrichment; (2) how much variation can be seen in spent fuel isotopics from similar and dissimilar reactor power operations; and (3) what isotopes (if any) could be used to determine burnup, cooling time, and initial enrichment? To answer these questions, 96,000 ORIGEN cases were run that simulated typical two-cycle operations with burnups ranging from 21,900 to 72,000 MWd/MTU, cooling times from 5 to 25 years, and initial enrichments between 3.5 and 5.0 weight percent. A relative error coefficient was determined to show how numerically close a reference solution has to be to another solution for the two results to be indistinguishable. By looking at the indistinguishable solutions, it can be shown how a precise measurement of spent fuel isotopics can be inconclusive when used in the absence of an operator's declarations. Using this Method of Indistinguishable Solutions (MIS), we evaluated a prominent method of nondestructive analysis - gamma spectroscopy. From this analysis, a new approach is proposed that demonstrates great independent forensic examination potential for spent nuclear fuel by examining both the neutron emissions of Cm-244 and the gamma emissions of Cs-134 and Eu-154.

Book Nondestructive Determination of Plutonium Mass in Spent Fuel

Download or read book Nondestructive Determination of Plutonium Mass in Spent Fuel written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: There are a variety of motivations for quantifying plutonium (Pu) in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capability of the International Atomic Energy Agency (LAEA) to safeguard nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at pyrochemical processing facilities, providing quantitative input to burnup credit and final safeguards measurements at a long-term repository. In order to determine Pu mass in spent fuel assemblies, thirteen NDA techniques were identified that provide information about the composition of an assembly. A key motivation of the present research is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the Pu mass of an assembly and (2) detecting the diversion of a significant number of rods. It is therefore anticipated that a combination of techniques will be required. A 5 year effort funded by the Next Generation Safeguards Initiative (NGSI) of the U.S. DOE was recently started in pursuit of these goals. The first two years involves researching all thirteen techniques using Monte Carlo modeling while the final three years involves fabricating hardware and measuring spent fuel. Here, we present the work in two main parts: (1) an overview of this NGSI effort describing the motivations and approach being taken; (2) The preliminary results for one of the NDA techniques - Passive Neutron Albedo Reactivity (PNAR). The PNAR technique functions by using the intrinsic neutron emission of the fuel (primarily from the spontaneous fission of curium) to self-interrogate any fissile material present. Two separate measurements of the spent fuel are made, both with and without cadmium (Cd) present. The ratios of the Singles, Doubles and Triples count rates obtained in each case are analyzed; known as the Cd ratio. The primary differences between the two measurements are the neutron energy spectrum and fluence in the spent fuel. By varying the thickness of the cadmium layer surrounding the spent fuel, a high and a low neutron-energy-measurement condition can be produced. The neutron detectors can be used to detect total neutrons (Singles) and/or Doubles and/or Triples. If the geometry of the measurement situation is unchanged between the two measurements, the change in the Cd ratio between these two measurements can be attributed to a change in the fissile content of the sample.

Book Data Mining Techniques to Estimate Plutonium  Initial Enrichment  Burnup  and Cooling Time in Spent Fuel Assemblies

Download or read book Data Mining Techniques to Estimate Plutonium Initial Enrichment Burnup and Cooling Time in Spent Fuel Assemblies written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

Book Determining Plutonium Mass in Spent Fuel Using Cf 252 Interrogation with Prompt Neutron Detection

Download or read book Determining Plutonium Mass in Spent Fuel Using Cf 252 Interrogation with Prompt Neutron Detection written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: 252Cf Interrogation with Prompt Neutron (CIPN) detection is proposed as one of 14 NDA techniques to determine Pu mass in spent fuel assemblies (FAs). CIPN is a low-cost and portable instrument, and it looks like a modified fork detector combined with an active interrogation source. Fission chamber (FC) is chosen as neutron detector because of its insensitivity to? radiation. The CIPN assay is comprised of two measurements, a background count and an active count, without and with the 252Cf source next to the fuel respectively. The net signal above background is primarily due to the multiplication of Cf source neutrons caused by the fissile content. The capability of CIPN to detect diversion and to determine fissile content was quantified using MCNPX simulations. New schemes were proposed (such as burnup and cooling time correction, etc.) and the results show that the fissile content of a target spent fuel assembly can be determined using CIPN signal.

Book Comparison of NDA and DA Measurement Techniques for Excess Plutonium Powders at the Hanford Site

Download or read book Comparison of NDA and DA Measurement Techniques for Excess Plutonium Powders at the Hanford Site written by and published by . This book was released on 1995 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative physical measurements are a n component of the International Atomic Energy Agency (IAEA) nuclear material m & guards verification regime. In December 1994, LA. FA safeguards were initiated on an inventory of excess plutonium powder items at the Plutonium Finishing Plant, Vault 3, on the US Department of Energy's Hanford Site. The material originl from the US nuclear weapons complex. The diversity of the chemical form and the heterogenous physical form of this inventory were anticipated to challenge the precision and accuracy of quantitative destructive analytical techniques. A sampling design was used to estimate the degree of heterogeneity of the plutonium content of a variety of inventory items. Plutonium concentration, the item net weight, and the 24°Pu content were among the variables considered in the design. Samples were obtained from randomly selected location within each item. Each sample was divided into aliquots and analyzed chemically. Operator measurements by calorimetry and IAEA measurements by coincident neutron nondestructive analysis also were performed for the initial physical inventory verification materials and similar items not yet under IAEA safeguards. The heterogeneity testing has confirmed that part of the material is indeed significantly heterogeneous; this means that precautionary measures must be taken to obtain representative samples for destructive analysis. In addition, the sampling variability due to material heterogeneity was found to be comparable with, or greater than, the variability of the operator's calorimetric measurements.

Book Verification of Plutonium Content in Spent Fuel Assemblies Using Neutron Self interrogation

Download or read book Verification of Plutonium Content in Spent Fuel Assemblies Using Neutron Self interrogation written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The large amounts of plutonium in reactor spent fuel assemblies has led to increased research directed toward the measurement of the plutonium for safeguards verification. The high levels of fission product gamma-ray activity and curium neutron backgrounds have made the plutonium measurement difficult. We have developed a new technique that can directly measure both the 235U concentration and the plutonium fissile concentration using the intrinsic neutron emission fronl the curium in the fuel assembly. The passive neutron albedo reactivity (PNAR) method has been described previously where the curium neutrons are moderated in the surrounding water and reflect back into the fuel assembly to induce fissions in the fissile material in the assembly. The cadmium (Cd) ratio is used to separate the spontaneous fission source neutrons from the reflected thermal neutron fission reactions. This method can measure the sum of the 235U and the plutonium fissile mass, but not the separate components. Our new differential die-away self-interrogation method (DDSI) can be used to separate the 235U from the 239Pu. The method has been applied to both fuel rods and full assemblies. For fuel rods the epi-thermal neutron reflection method filters the reflected neutrons through thin Cd filters so that the reflected neutrons are from the epi-cadmium energy region. The neutron fission energy response in the epi-cadmium region is distinctly different for 235U and 239Pu. We are able to measure the difference between 235U and 239Pu by sampling the neutron induced fission rate as a function of time and multiplicity after the initial fission neutron is detected. We measure the neutron fission rate using list-mode data collection that stores the time correlations between all of the counts. The computer software can select from the data base the time correlations that include singles, doubles, and triples. The die-away time for the doubles distribution is distinctly different for 235U and 239Pu. The 239Pu has a higher fission cross-section in the epi-cadmium neutron region and larger induced fission moments than 235U, so the measured die-away time can provide the relative amounts of 239Pu and 235U. This paper will present the Monte Carlo simulations for the detector and sample configurations for both fuel pins and full fuel assemblies.

Book Nuclear Fuel Technology

Download or read book Nuclear Fuel Technology written by International Organization for Standardization and published by . This book was released on 2013 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Strategy and Methodology for Radioactive Waste Characterization

Download or read book Strategy and Methodology for Radioactive Waste Characterization written by International Atomic Energy Agency and published by IAEA. This book was released on 2007 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.

Book Aus d  J  1864

    Book Details:
  • Author :
  • Publisher :
  • Release : 1868
  • ISBN :
  • Pages : pages

Download or read book Aus d J 1864 written by and published by . This book was released on 1868 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: