EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Responsible Data Science

Download or read book Responsible Data Science written by Peter C. Bruce and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the most serious prevalent ethical issues in data science with this insightful new resource The increasing popularity of data science has resulted in numerous well-publicized cases of bias, injustice, and discrimination. The widespread deployment of “Black box” algorithms that are difficult or impossible to understand and explain, even for their developers, is a primary source of these unanticipated harms, making modern techniques and methods for manipulating large data sets seem sinister, even dangerous. When put in the hands of authoritarian governments, these algorithms have enabled suppression of political dissent and persecution of minorities. To prevent these harms, data scientists everywhere must come to understand how the algorithms that they build and deploy may harm certain groups or be unfair. Responsible Data Science delivers a comprehensive, practical treatment of how to implement data science solutions in an even-handed and ethical manner that minimizes the risk of undue harm to vulnerable members of society. Both data science practitioners and managers of analytics teams will learn how to: Improve model transparency, even for black box models Diagnose bias and unfairness within models using multiple metrics Audit projects to ensure fairness and minimize the possibility of unintended harm Perfect for data science practitioners, Responsible Data Science will also earn a spot on the bookshelves of technically inclined managers, software developers, and statisticians.

Book Responsible Data Science

Download or read book Responsible Data Science written by Grant Fleming and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing popularity of data science has resulted in numerous well-publicized cases of bias, injustice, and discrimination. The widespread deployment of "Black box" algorithms that are difficult or impossible to understand and explain, even for their developers, is a primary source of these unanticipated harms, making modern techniques and methods for manipulating large data sets seem sinister, even dangerous. When put in the hands of authoritarian governments, these algorithms have enabled suppression of political dissent and persecution of minorities. To prevent these harms, data scientists everywhere must come to understand how the algorithms that they build and deploy may harm certain groups or be unfair.

Book Ethics and Data Science

    Book Details:
  • Author : Mike Loukides
  • Publisher : "O'Reilly Media, Inc."
  • Release : 2018-07-25
  • ISBN : 1492078212
  • Pages : 37 pages

Download or read book Ethics and Data Science written by Mike Loukides and published by "O'Reilly Media, Inc.". This book was released on 2018-07-25 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the impact of data science continues to grow on society there is an increased need to discuss how data is appropriately used and how to address misuse. Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day. To help you consider all of possible ramifications of your work on data projects, this report includes: A sample checklist that you can adapt for your own procedures Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences Suggestions for building ethics into your data-driven culture Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.

Book Process Mining

    Book Details:
  • Author : Wil M. P. van der Aalst
  • Publisher : Springer
  • Release : 2016-04-15
  • ISBN : 3662498510
  • Pages : 477 pages

Download or read book Process Mining written by Wil M. P. van der Aalst and published by Springer. This book was released on 2016-04-15 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerably expanded section on software tools and a completely new chapter of process mining in the large. It is self-contained, while at the same time covering the entire process-mining spectrum from process discovery to predictive analytics. After a general introduction to data science and process mining in Part I, Part II provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Next, Part III focuses on process discovery as the most important process mining task, while Part IV moves beyond discovering the control flow of processes, highlighting conformance checking, and organizational and time perspectives. Part V offers a guide to successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM and several commercial products. Lastly, Part VI takes a step back, reflecting on the material presented and the key open challenges. Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.

Book Data and Information Quality

Download or read book Data and Information Quality written by Carlo Batini and published by Springer. This book was released on 2016-03-23 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic and comparative description of the vast number of research issues related to the quality of data and information. It does so by delivering a sound, integrated and comprehensive overview of the state of the art and future development of data and information quality in databases and information systems. To this end, it presents an extensive description of the techniques that constitute the core of data and information quality research, including record linkage (also called object identification), data integration, error localization and correction, and examines the related techniques in a comprehensive and original methodological framework. Quality dimension definitions and adopted models are also analyzed in detail, and differences between the proposed solutions are highlighted and discussed. Furthermore, while systematically describing data and information quality as an autonomous research area, paradigms and influences deriving from other areas, such as probability theory, statistical data analysis, data mining, knowledge representation, and machine learning are also included. Last not least, the book also highlights very practical solutions, such as methodologies, benchmarks for the most effective techniques, case studies, and examples. The book has been written primarily for researchers in the fields of databases and information management or in natural sciences who are interested in investigating properties of data and information that have an impact on the quality of experiments, processes and on real life. The material presented is also sufficiently self-contained for masters or PhD-level courses, and it covers all the fundamentals and topics without the need for other textbooks. Data and information system administrators and practitioners, who deal with systems exposed to data-quality issues and as a result need a systematization of the field and practical methods in the area, will also benefit from the combination of concrete practical approaches with sound theoretical formalisms.

Book Responsible Conduct of Research

Download or read book Responsible Conduct of Research written by Adil E. Shamoo and published by Oxford University Press. This book was released on 2009-02-12 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent scandals and controversies, such as data fabrication in federally funded science, data manipulation and distortion in private industry, and human embryonic stem cell research, illustrate the importance of ethics in science. Responsible Conduct of Research, now in a completely updated second edition, provides an introduction to the social, ethical, and legal issues facing scientists today.

Book Responsible AI and Analytics for an Ethical and Inclusive Digitized Society

Download or read book Responsible AI and Analytics for an Ethical and Inclusive Digitized Society written by Denis Dennehy and published by Springer Nature. This book was released on 2021-08-25 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the proceedings of the 20th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2021, held in Galway, Ireland, in September 2021.* The total of 57 full and 8 short papers presented in these volumes were carefully reviewed and selected from 141 submissions. The papers are organized in the following topical sections: AI for Digital Transformation and Public Good; AI & Analytics Decision Making; AI Philosophy, Ethics & Governance; Privacy & Transparency in a Digitized Society; Digital Enabled Sustainable Organizations and Societies; Digital Technologies and Organizational Capabilities; Digitized Supply Chains; Customer Behavior and E-business; Blockchain; Information Systems Development; Social Media & Analytics; and Teaching & Learning. *The conference was held virtually due to the COVID-19 pandemic.

Book Doing Data Science

    Book Details:
  • Author : Cathy O'Neil
  • Publisher : "O'Reilly Media, Inc."
  • Release : 2013-10-09
  • ISBN : 144936389X
  • Pages : 320 pages

Download or read book Doing Data Science written by Cathy O'Neil and published by "O'Reilly Media, Inc.". This book was released on 2013-10-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Book Responsible Data Science

Download or read book Responsible Data Science written by Jimson Mathew and published by Springer Nature. This book was released on 2022-11-14 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises select proceedings of the 7th International Conference on Data Science and Engineering (ICDSE 2021). The contents of this book focus on responsible data science. This book tries to integrate research across diverse topics related to data science, such as fairness, trust, ethics, confidentiality, transparency, and accuracy. The chapters in this book represent research from different perspectives that offer novel theoretical implications that span multiple disciplines. The book will serve as a reference resource for researchers and practitioners in academia and industry.

Book Artificial Intelligence and Machine Learning in Libraries

Download or read book Artificial Intelligence and Machine Learning in Libraries written by Jason Griffey and published by ALA TechSource. This book was released on 2019-01-01 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt: This issue of Library Technology Reports argues that the near future of library work will be enormously impacted and perhaps forever changed as a result of artificial intelligence (AI) and machine learning systems becoming commonplace.

Book Group Privacy

    Book Details:
  • Author : Linnet Taylor
  • Publisher : Springer
  • Release : 2016-12-28
  • ISBN : 3319466089
  • Pages : 249 pages

Download or read book Group Privacy written by Linnet Taylor and published by Springer. This book was released on 2016-12-28 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the book is to present the latest research on the new challenges of data technologies. It will offer an overview of the social, ethical and legal problems posed by group profiling, big data and predictive analysis and of the different approaches and methods that can be used to address them. In doing so, it will help the reader to gain a better grasp of the ethical and legal conundrums posed by group profiling. The volume first maps the current and emerging uses of new data technologies and clarifies the promises and dangers of group profiling in real life situations. It then balances this with an analysis of how far the current legal paradigm grants group rights to privacy and data protection, and discusses possible routes to addressing these problems. Finally, an afterword gathers the conclusions reached by the different authors and discuss future perspectives on regulating new data technologies.

Book Data Feminism

    Book Details:
  • Author : Catherine D'Ignazio
  • Publisher : MIT Press
  • Release : 2020-03-31
  • ISBN : 0262358530
  • Pages : 328 pages

Download or read book Data Feminism written by Catherine D'Ignazio and published by MIT Press. This book was released on 2020-03-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.

Book Responsible Artificial Intelligence

Download or read book Responsible Artificial Intelligence written by Virginia Dignum and published by Springer Nature. This book was released on 2019-11-04 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the author examines the ethical implications of Artificial Intelligence systems as they integrate and replace traditional social structures in new sociocognitive-technological environments. She discusses issues related to the integrity of researchers, technologists, and manufacturers as they design, construct, use, and manage artificially intelligent systems; formalisms for reasoning about moral decisions as part of the behavior of artificial autonomous systems such as agents and robots; and design methodologies for social agents based on societal, moral, and legal values. Throughout the book the author discusses related work, conscious of both classical, philosophical treatments of ethical issues and the implications in modern, algorithmic systems, and she combines regular references and footnotes with suggestions for further reading. This short overview is suitable for undergraduate students, in both technical and non-technical courses, and for interested and concerned researchers, practitioners, and citizens.

Book Responsible Innovation

Download or read book Responsible Innovation written by Richard Owen and published by John Wiley & Sons. This book was released on 2013-03-21 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science and innovation have the power to transform our lives and the world we live in - for better or worse – in ways that often transcend borders and generations: from the innovation of complex financial products that played such an important role in the recent financial crisis to current proposals to intentionally engineer our Earth’s climate. The promise of science and innovation brings with it ethical dilemmas and impacts which are often uncertain and unpredictable: it is often only once these have emerged that we feel able to control them. How do we undertake science and innovation responsibly under such conditions, towards not only socially acceptable, but socially desirable goals and in a way that is democratic, equitable and sustainable? Responsible innovation challenges us all to think about our responsibilities for the future, as scientists, innovators and citizens, and to act upon these. This book begins with a description of the current landscape of innovation and in subsequent chapters offers perspectives on the emerging concept of responsible innovation and its historical foundations, including key elements of a responsible innovation approach and examples of practical implementation. Written in a constructive and accessible way, Responsible Innovation includes chapters on: Innovation and its management in the 21st century A vision and framework for responsible innovation Concepts of future-oriented responsibility as an underpinning philosophy Values – sensitive design Key themes of anticipation, reflection, deliberation and responsiveness Multi – level governance and regulation Perspectives on responsible innovation in finance, ICT, geoengineering and nanotechnology Essentially multidisciplinary in nature, this landmark text combines research from the fields of science and technology studies, philosophy, innovation governance, business studies and beyond to address the question, “How do we ensure the responsible emergence of science and innovation in society?”

Book Real World AI

    Book Details:
  • Author : Alyssa Simpson Rochwerger
  • Publisher : Lioncrest Publishing
  • Release : 2021-03-16
  • ISBN : 9781544518831
  • Pages : 222 pages

Download or read book Real World AI written by Alyssa Simpson Rochwerger and published by Lioncrest Publishing. This book was released on 2021-03-16 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: How can you successfully deploy AI? When AI works, it's nothing short of brilliant, helping companies make or save tremendous amounts of money while delighting customers on an unprecedented scale. When it fails, the results can be devastating. Most AI models never make it out of testing, but those failures aren't random. This practical guide to deploying AI lays out a human-first, responsible approach that has seen more than three times the success rate when compared to the industry average. In Real World AI, Alyssa Simpson Rochwerger and Wilson Pang share dozens of AI stories from startups and global enterprises alike featuring personal experiences from people who have worked on global AI deployments that impact billions of people every day.  AI for business doesn't have to be overwhelming. Real World AI uses plain language to walk you through an AI approach that you can feel confident about-for your business and for your customers.

Book 97 Things About Ethics Everyone in Data Science Should Know

Download or read book 97 Things About Ethics Everyone in Data Science Should Know written by Bill Franks and published by O'Reilly Media. This book was released on 2020-08-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the high-profile cases of real or perceived unethical activity in data science aren’t matters of bad intent. Rather, they occur because the ethics simply aren’t thought through well enough. Being ethical takes constant diligence, and in many situations identifying the right choice can be difficult. In this in-depth book, contributors from top companies in technology, finance, and other industries share experiences and lessons learned from collecting, managing, and analyzing data ethically. Data science professionals, managers, and tech leaders will gain a better understanding of ethics through powerful, real-world best practices. Articles include: Ethics Is Not a Binary Concept—Tim Wilson How to Approach Ethical Transparency—Rado Kotorov Unbiased ≠ Fair—Doug Hague Rules and Rationality—Christof Wolf Brenner The Truth About AI Bias—Cassie Kozyrkov Cautionary Ethics Tales—Sherrill Hayes Fairness in the Age of Algorithms—Anna Jacobson The Ethical Data Storyteller—Brent Dykes Introducing Ethicize™, the Fully AI-Driven Cloud-Based Ethics Solution!—Brian O’Neill Be Careful with "Decisions of the Heart"—Hugh Watson Understanding Passive Versus Proactive Ethics—Bill Schmarzo

Book Fundamentals of Clinical Data Science

Download or read book Fundamentals of Clinical Data Science written by Pieter Kubben and published by Springer. This book was released on 2018-12-21 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.