EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Resistive Guiding of Fast Electrons in High intensity Laser plasma Interactions

Download or read book Resistive Guiding of Fast Electrons in High intensity Laser plasma Interactions written by Damon Farley and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fast Electron Energy Transport in High Intensity Laser plasma Interactions

Download or read book Fast Electron Energy Transport in High Intensity Laser plasma Interactions written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book On the Acceleration and Transport of Electrons Generated by Intense Laser Plasma Interactions at Sharp Interfaces

Download or read book On the Acceleration and Transport of Electrons Generated by Intense Laser Plasma Interactions at Sharp Interfaces written by Joshua Joseph May and published by . This book was released on 2017 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continued development of the chirped pulse amplification technique has allowed for the development of lasers with powers of in excess of $10^{15}W$, for pulse lengths with durations of between .01 and 10 picoseconds, and which can be focused to energy densities greater than 100 giga-atmospheres. When such lasers are focused onto material targets, the possibility of creating particle beams with energy fluxes of comparable parameters arises. Such interactions have a number of theorized applications. For instance, in the Fast Ignition concept for Inertial Confinement Fusion \cite{Tabak:1994vx}, a high-intensity laser efficiently transfers its energy into an electron beam with an appropriate spectra which is then transported into a compressed target and initiate a fusion reaction. Another possible use is the so called Radiation Pressure Acceleration mechanism, in which a high-intensity, circularly polarized laser is used to create a mono-energetic ion beam which could then be used for medical imaging and treatment, among other applications. For this latter application, it is important that the laser energy is transferred to the ions and not to the electrons. However the physics of such high energy-density laser-matter interactions is highly kinetic and non-linear, and presently not fully understood. In this dissertation, we use the Particle-in-Cell code OSIRIS \cite{Fonseca:2002, Hemker:1999} to explore the generation and transport of relativistic particle beams created by high intensity lasers focused onto solid density matter at normal incidence. To explore the generation of relativistic electrons by such interactions, we use primarily one-dimensional (1D) and two-dimensional (2D), and a few three-dimensional simulations (3D). We initially examine the idealized case of normal incidence of relatively short, plane-wave lasers on flat, sharp interfaces. We find that in 1D the results are highly dependent on the initial temperature of the plasma, with significant absorption into relativistic electrons only possible when the temperature is high in the direction parallel to the electric field of the laser. In multi-dimensions, absorption into relativistic electrons arises independent of the initial temperature for both fixed and mobile ions, although the absorption is higher for mobile ions. In most cases however, absorption remains at $10's$ of percent, and as such a standing wave structure from the incoming and reflected wave is setup in front of the plasma surface. The peak momentum of the accelerated electrons is found to be $2 a_0 m_e c$, where $a_0 \equiv e A_0/m_e c^2$ is the normalized vector potential of the laser in vacuum, $e$ is the electron charge, $m_e$ is the electron mass, and $c$ is the speed of light. We consider cases for which $a_0>1$. We therefore call this the $2 a_0$ acceleration process. Using particle tracking, we identify the detailed physics behind the $2 a_0$ process and find it is related to the standing wave structure of the fields. We observe that the particles which gain energy do so by interacting with the laser electric field within a quarter wavelength of the surface where it is at an anti-node (it is a node at the surface). We find that only particles with high initial momentum -- in particular high transverse momentum -- are able to navigate through the laser magnetic field as its magnitude decreases in time each half laser cycle (it is an anti-node at the surface) to penetrate a quarter wavelength into the vacuum where the laser electric field is large. For a circularly polarized laser the magnetic field amplitude never decreases at the surface, instead its direction simply rotates. This prevents electrons from leaving the plasma and they therefore cannot gain energy from the electric field. For pulses with longer durations ($\gtrsim 250fs$), or for plasmas which do not have initially sharp interfaces, we discover that in addition to the $2 a_0$ acceleration at the surface, relativistic particles are also generated in an underdense region in front of the target. These particles have energies without a sharp upper bound. Although accelerating these particles removes energy from the incoming laser, and although the surface of the plasma does not stay perfectly flat and so the standing wave structure becomes modified, we find in most cases, the $2 a_0$ acceleration mechanism occurs similarly at the surface and that it still dominates the overall absorption of the laser. To explore the generation of relativistic electrons at a solid surface and transport of the heat flux of these electrons in cold or warm dense matter, we compare OSIRIS simulations with results from an experiment performed on the OMEGA laser system at the University of Rochester. In that experiment, a thin layer of gold placed on a slab of plastic is illuminated by an intense laser. A greater than order-of-magnitude decrease in the fluence of hot electrons is observed when those electrons are transported through a plasma created from a shock-heated plastic foam, as compared to transport through cold matter (unshocked plastic foam) at somewhat higher density. Our simulations indicate two reasons for the experimental result, both related to the magnetic field. The primary effect is the generation of a collimating B-field around the electron beam in the cold plastic foam, caused by the resistivity of the plastic. We use a Monte Carlo collision algorithm implemented in OSIRIS to model the experiment. The incoming relativistic electrons generate a return current. This generates a resistive electric field which then generates a magnetic field from Faraday's law. This magnetic field collimates the forward moving relativistic electrons. The collisionality of both the plastic and the gold are likely to be greater in the experiment than the 2D simulations where we used a lower density for the gold (to make the simulations possible) which heats up more. In addition, the use of 2D simulations also causes the plastic to heat up more than expected. We compensated for this by increasing the collisionality of the plasma in the simulations and this led to better agreement. The second effect is the growth of a strong, reflecting B-field at the edge of the plastic region in the shock heated material, created by the convective transport of this field back towards the beam source due to the neutralizing return current. Both effects appear to be caused primarily by the difference is density in the two cases. Owing to its higher heat capacity, the higher density material does not heat up as much from the heat flux coming from the gold, which leads to a larger resistivity. Lastly, we explored a numerical effect which has particular relevance to these simulations, due to their high energy and plasma densities. This effect is caused by the use of macro particles (which represent many real particles) which have the correct charge to mass ratio but higher charge. Therefore, any physics of a single charge that scales as $q^2/m$ will be artificially high. Physics that involves scales smaller than the macro-particle size can be mitigated through the use of finite size particles. However, for relativistic particles the spatial scale that matters is the skin depth and the cell sizes and particle sizes are both smaller than this. This allows the wakes created by these particles to be artificially high which causes them to slow down much faster than a single electron. We studied this macro-particle stopping power theoretically and in OSIRIS simulations. We also proposed a solution in which particles are split in to smaller particles as they gain energy. We call this effect Macro Particle Stopping. Although this effect can be mitigated by using more particles, this is not always computationally efficient. We show how it can also be mitigated by using high-order particle shapes, and/or by using a particle-splitting method which reduces the charge of only the most energetic electrons.

Book Laser Plasma Interactions

Download or read book Laser Plasma Interactions written by Dino A. Jaroszynski and published by Taylor & Francis. This book was released on 2009-03-27 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents diagnostic methods, experimental techniques, and simulation tools used to study and model laser-plasma interactions. This book discusses the basic theory of the interaction of intense electromagnetic radiation fields with matter.

Book Theory and Modelling of Fast Electron Transport in Laser plasma Interactions

Download or read book Theory and Modelling of Fast Electron Transport in Laser plasma Interactions written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental Study of Fast Electrons from the Interaction of Ultra Intense Laser and Solid Density Plasmas

Download or read book Experimental Study of Fast Electrons from the Interaction of Ultra Intense Laser and Solid Density Plasmas written by Byoung-ick Cho and published by . This book was released on 2008 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: A series of experiments have been performed to understand fast electron generation from ultra intense laser-solid interaction, and their transports through a cold material. Using Micro-Electro-Mechanical Systems (MEMS), we contrived various shape of cone and wedge targets. The first set of experiment was for investigating hot electron generations by measuring x-ray production in different energy ranges. K[alpha] and hard x-ray yields were compared when the laser was focused into pyramidal shaped cone targets and wedge shaped targets. Hot electron production is highest in the wedge targets irradiated with transverse polarization, though K[alpha] is maximized with wedge targets and parallel polarization. These results are explained with particle-in-cell (PIC) simulations utilizing PICLS and OOPIC codes. We also investigate hot electron transport in foil, wedge, and cone targets by observing the transition radiation emitted from the targets rear side along with bremsstrahlung x-ray measurement. Twodimensional images and spectra of 800 nm coherent transition radiation (CTR) along with ballistic electron transport analysis have revealed the spatial, temporal, and temperature characteristics of hot electron micro-pulses. Various patterns from different target-laser configurations suggest that hot electrons were guided by the strong static electromagnetic fields at the target boundary. Evidence about fast electron guiding in the cone is also observed. CTR at 400 nm showed that two distinct beams of MeV electrons are emitted from the target rear side at the same time. This measurement indicates that two different mechanisms, namely resonance absorption and j x B heating, create two populations of electrons at the targets front side and drive them to different directions, with distinct temperatures and temporal characteristics. This interpretation is consistent with the results from 3D-PIC code Virtual Laser Plasma Laboratory (VLPL).

Book Fast electron Source Characterization and Transport in High intensity Laser solid Interactions and the Role of Resistive Magnetic Fields

Download or read book Fast electron Source Characterization and Transport in High intensity Laser solid Interactions and the Role of Resistive Magnetic Fields written by Michael Storm and published by . This book was released on 2009 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fast Electron Transport in Overdense Laser induced Plasmas

Download or read book Fast Electron Transport in Overdense Laser induced Plasmas written by Jeremy Martin Hill and published by . This book was released on 2003 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electron Generation and Transport in Intense Relativistic Laser plasma Interactions Relevant to Fast Ignition ICF

Download or read book Electron Generation and Transport in Intense Relativistic Laser plasma Interactions Relevant to Fast Ignition ICF written by Tammy Yee Wing Ma and published by . This book was released on 2010 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J.A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

Book Specular Reflectivity and Suprathermal Electron Measurements from Relativistic Laser Plasma Interactions

Download or read book Specular Reflectivity and Suprathermal Electron Measurements from Relativistic Laser Plasma Interactions written by Anthony John Link and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Short pulse, high intensity laser plasma interactions couple a significant portion of the laser energy into relativistic electrons at the plasma critical density. This interaction forms the basis for an igniter beam in the Fast Ignition (FI) approach to Inertial Fusion Energy. However, the details on how much laser energy is coupled into electrons, and the momentum distribution of these laser accelerated electrons are still not well known. This thesis contains experimental measurements of the specularly reflected light and electrons that escape the plasma, as well as numerical simulations of the energy spectrum of electrons escaping from a target struck by an ultra-intense laser pulse to investigate laser plasma interactions. The electrons that escape the plasma to reach a detector in vacuum are modified by electromagnetic fields in the material and at the plasma-vacuum interface as electrons leave a previously charge neutral plasma. These dynamic fields have made the experimental connection between the electrons measured far from the plasma and the internal distribution difficult. The experimental spectrum recorded at the detector typically has two distinct regions, a strong low energy feature and a semilog feature at higher energies. The numerical simulations show that the measured electrons in this higher energy semilog feature contain information about the initial distribution but are modified by the fields due to target charging. The measured electrons in the low energy feature are due to a secondary process where the electrons accelerate ions and leave the plasma with them. These electrons do not directly contain information about the initial electron distribution. The experimental measurements when accounting for the results of the simulations show that the ponderomotive theory of laser plasma interactions is correct at high intensities and is independent of laser pulse duration. The advanced fast ignition design uses a reentrant cone to protect the laser light from blowoff plasma during the implosion and has been proposed to provide a means to increase the focal intensity by using the cone walls to guide the laser. A novel specular imaging diagnostic was developed capable of measuring in-situ reflected laser pulses with greater than 100 J of laser light and oh-shot intensities greater than 1020 Wcm-2. This spatially resolved diagnostic for the first time presents both the spatial quality of the reflected light as well as the time-integrated reflectivity from the laser plasma interaction. These experimental results show that the laser light reflecting from the target has a much wider divergence than the initial laser beam, and the reflectivity of the plasma varies significantly with incident angle. This increased reflected divergence makes the use of the wall of the cone a poor choice for increasing laser intensity on target. Furthermore, the reflectivity varies from 2% to 50% in changing the incident angle of light from 20° to 75°, making multiple cone wall bounces at a further disadvantage for guiding light to the cone tip.

Book Bremsstrahlung Radiation and Fast Electron Transport in Laser plasma Interactions

Download or read book Bremsstrahlung Radiation and Fast Electron Transport in Laser plasma Interactions written by Chris D. Armstrong and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The flux of this second source was investigated through an analytical model that treated the sheath as a threshold to drive recirculation of electrons through the target. This model found good agreement with the measured results, and can be applied to predict the optimum defocus for different target materials and thicknesses.The second chapter utilises a capillary target to trap the laser light and increase the conversion into electrons, the initial concept was to invoke numerous low intensity interactions as the laser propagated through the capillary.This would, in theory, produce a high flux - low temperature electron population that in turn would produce a high flux of x-rays. However, it was found that the flux increased but the temperature remained similar to that of a solid target. PIC simulations demonstrate that the electrons experience a series of accelerations within the capillary, undergoing direct-laser-acceleration (DLA)as lateral fields emerge within the channel.The final chapter outlines a simple targetry change to confine and enhance the x-ray emission from solid targets. By using a standing wire geometry, instead of a foil target, the electron expansion is confined to the lateral extent of the wire. The resultant field that emerges on the surface of the wire is greater in magnitude than that of a foil and develops sooner into the acceleration window recirculating more of the electrons within the target. This results in a significant, 50%, increase in total x-ray flux from the same laser conditions,and an increase in imaging quality of 2:6 due to the increase in flux and the confinement of the lateral x-ray source.

Book The Effects of Pre formed Plasma on the Generation and Transport of Fast Electrons in Relativistic Laser solid Interactions

Download or read book The Effects of Pre formed Plasma on the Generation and Transport of Fast Electrons in Relativistic Laser solid Interactions written by Bhooshan S. Paradkar and published by . This book was released on 2012 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis we present the dynamics of relativistic fast electrons produced in the laser-solid interactions at the intensities greater than 1018 W/cm2. In particular, the effects of pre-formed plasma in front of a solid target on the generation and transport of these fast electrons is studied. The presence of such a pre-formed plasma is ubiquitous in almost all the present short pulse high intensity laser-solid interaction experiments. First, the generation of fast electrons in the presence of pre-formed plasma of varying density scale-lengths is studied with the help of Particle In Cell (PIC) simulations. It is shown that the fast electrons energy increases with the increasing pre-formed plasma, consistent with the experimental observations. The possible mechanism of generation of such energetic electrons is studied. It is proposed that the interaction of plasma electrons with the laser in the presence of ambipolar electric field, generated due to the laser heating, can result in the electron acceleration beyond laser ponderomotive energy. The analytical and numerical studies of this heating mechanism are presented. In the second part of thesis, the influence of pre-formed plasma on the fast electrons transport is studied. Especially the physics of refluxing of these fast electrons due to the excitation of electrostatic sheath fields inside the pre-formed plasma is investigated. It is shown that this refluxing is responsible for the `annular ring shaped' copper K[alpha] x-ray emission observed in the recent high intensity laser-solid experiments.

Book Electron Generation and Transport in Intense Relativistic Laser Plasma Interactions Relevant to Fast Ignition ICF

Download or read book Electron Generation and Transport in Intense Relativistic Laser Plasma Interactions Relevant to Fast Ignition ICF written by and published by . This book was released on 2010 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J.A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

Book Laser plasma Interactions and Hot Electron Generation in Inertial Confinement Fusion

Download or read book Laser plasma Interactions and Hot Electron Generation in Inertial Confinement Fusion written by Jun Li and published by . This book was released on 2016 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis studies several problems related to hot (energetic) electron generation in laser-plasma interactions in inertial confinement fusion (ICF). We study laserplasma instabilities (LPI) that can generate hot electrons in direct drive ICF under a range of laser intensities relevant to both the conventional hot-spot ignition and shock ignition. We study the in uence of LPI and hot electrons on the hydrodynamic evolution of ICF targets. We study hot electron generation in intense laser-plasma interactions in fast ignition cone targets. We also study how to implement particle collisions, which are important to hot electron generation in LPI, in Particle-in-Cell (PIC) codes on Graphic Process Units (GPU's). We find that ion density modulations can turn convective two-plasmon decay (TPD) and stimulated Raman scattering (SRS) instabilities to absolute ones in the region below the quarter critical density (nc=4). In this region, our uid simulations show that when a sinusoidal density modulation is superimposed on a linear density profile, convective two-plasmon decay (TPD) and stimulated Raman scattering (SRS) instabilities can become absolutely unstable under realistic direct-drive ICF conditions. Analysis of a three-wave model with a two-slope density profile shows that a sufficiently large change of the density gradient in a linear density profile can turn convective instabilities into absolute ones. An analytical expression is given for the threshold of the gradient change, which depends on the convective gain only. Growth rates for the absolute modes are also obtained. The threshold and growth rates from the two-slope profile are found to approximate those under sinusoidal modulations. These results explain the origin of the TPD modes below the nc=4 surface that in previous research were found to be critical to hot electron generation. Combining PIC and hydrodynamics simulations, we study the LPI and hydro evolution of coronal plasmas in an OMEGA EP[J.H. Kelly et al., 2006] long-scalelength experiment[Hu et al., 2013; Haberberger et al., 2014] with planar targets. Plasma and laser conditions are first obtained in a DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation is performed to study laser absorption and hot-electron generation caused by LPI near the nc=4 region. The obtained information from the PIC simulation is subsequently coupled back to another DRACO simulation to examine how the LPI affect the overall hydrodynamics. The results show that the LPIinduced laser absorption can increase the electron temperature due to local heating by plasma waves. But it does not significantly change the density scale length in the corona because the high heat conductivity can spread the higher energy deposited near the nc=4 region in a wider region, and the portion of the energy carried by the hot electrons going towards high density region is still deposited beyond the nc=4 region. The collisional effects can affect the hot electron generation by damping the coupling waves of TPD and SRS instabilities. We have benchmarked the collision package in OSIRIS and adapted this package to a PIC code on graphics processors (GPU) with CUDA. The collision package is based on the cumulative collision theory, which treats a succession of small-angle binary collisions as a unique binary collision with a large scattering angle. It uses the computing cell in the GPUPIC code as the collision cell, and randomly pairs the particles in each collision cell for collision. In this process, it takes advantage of the fast on-chip shared memory and gets a remarkable performance. The benchmarks show that this collision package only needs to be called every 100 steps, and has a performance of 0:07 - 0:09ns=particle - step, only a 1:4% increase over the 5:36ns=particle - step without collisions on a Nvidia GTX 680 GPU. Test problems of beam-plasma scattering and electron plasma wave damping show that the collision frequencies calculated from the simulation results are consistent with theory. Hot electron generation is also important in fast ignition where typical laser intensities are higher than the hot-spot ignition or shock ignition. We perform PIC simulations for a cone-in-shell integrated fast-ignition experiment at the Omega Laser Facility[Boehly et al., 1997] with the initial plasma density profile taken from hydrodynamic simulations of the prepulse interaction with the gold cone. Hotelectron generation from laser-pre-plasma interactions and transport up to 100nc are studied. The simulations show a mean divergence half-angle of 68 degrees and 50% absorption for the hot electrons. The results show that the hot electrons are dominated in number by low-energy electrons but in energy by multi-MeV electrons. Electron transport between 5 and 100 nc is ballistic. In the late stage of the simulation, hot electron generation is largely independent of polarization, indicating a stochastic hot-electron-generation mechanism.

Book Laser Plasma Interactions 5

Download or read book Laser Plasma Interactions 5 written by M.B Hooper and published by CRC Press. This book was released on 1996-01-01 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a broad overview in the increasingly important field of laser-plasma interactions. With the growth of research into fusion much international effort is being devoted to the problems of inertial confinement. This collection of lectures provides the novice researcher with the context in which current research papers can be understood. Laser Plasma Interactions 5 is one of the first publications to include recently declassified results from the United States inertial confinement fusion research program and as such is an indispensable reference for those wishing to find out about this previously inaccessible research. Presented by 14 speakers of international repute, the emphasis throughout the volume is on inertial confinement fusion. Topics also covered include plasma radiation and transport processes, diagnostic measurements, dense plasmas, high power lasers and X-ray lasers.