EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Research in Progress in Applied Mathematics  Numerical Analysis  Fluid Mechanics  and Computer Science

Download or read book Research in Progress in Applied Mathematics Numerical Analysis Fluid Mechanics and Computer Science written by National Aeronautics and Space Adm Nasa and published by . This book was released on 2018-11-10 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science. Unspecified Center...

Book Research in Progress  Applied and Numerical Mathematics

Download or read book Research in Progress Applied and Numerical Mathematics written by and published by . This book was released on 1998 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Integral Methods in Science and Engineering

Download or read book Integral Methods in Science and Engineering written by Christian Constanda and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.​

Book Recent Advances in Computational Fluid Dynamics

Download or read book Recent Advances in Computational Fluid Dynamics written by C.C. Chao and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the preface: Fluid dynamics is an excellent example of how recent advances in computational tools and techniques permit the rapid advance of basic and applied science. The development of computational fluid dynamics (CFD) has opened new areas of research and has significantly supplemented information available from experimental measurements. Scientific computing is directly responsible for such recent developments as the secondary instability theory of transition to turbulence, dynamical systems analyses of routes to chaos, ideas on the geometry of turbulence, direct simulations of turbulence, three-dimensional full-aircraft flow analyses, and so on. We believe that CFD has already achieved a status in the tool-kit of fluid mechanicians equal to that of the classical scientific techniques of mathematical analysis and laboratory experiment.

Book Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics

Download or read book Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics written by Timothy J. Barth and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: As computational fluid dynamics (CFD) is applied to ever more demanding fluid flow problems, the ability to compute numerical fluid flow solutions to a user specified tolerance as well as the ability to quantify the accuracy of an existing numerical solution are seen as essential ingredients in robust numerical simulation. Although the task of accurate error estimation for the nonlinear equations of CFD seems a daunting problem, considerable effort has centered on this challenge in recent years with notable progress being made by the use of advanced error estimation techniques and adaptive discretization methods. To address this important topic, a special course wasjointly organized by the NATO Research and Technology Office (RTO), the von Karman Insti tute for Fluid Dynamics, and the NASA Ames Research Center. The NATO RTO sponsored course entitled "Error Estimation and Solution Adaptive Discretization in CFD" was held September 10-14, 2002 at the NASA Ames Research Center and October 15-19, 2002 at the von Karman Institute in Belgium. During the special course, a series of comprehensive lectures by leading experts discussed recent advances and technical progress in the area of numerical error estimation and adaptive discretization methods with spe cific emphasis on computational fluid dynamics. The lecture notes provided in this volume are derived from the special course material. The volume con sists of 6 articles prepared by the special course lecturers.

Book Numerical Methods for Flows

Download or read book Numerical Methods for Flows written by Harald van Brummelen and published by Springer Nature. This book was released on 2020-02-22 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes selected contributions on applied mathematics, numerical analysis, numerical simulation and scientific computing related to fluid mechanics problems, presented at the FEF-“Finite Element for Flows” conference, held in Rome in spring 2017. Written by leading international experts and covering state-of-the-art topics in numerical simulation for flows, it provides fascinating insights into and perspectives on current and future methodological and numerical developments in computational science. As such, the book is a valuable resource for researchers, as well as Masters and Ph.D students.

Book Numerical Fluid Dynamics

Download or read book Numerical Fluid Dynamics written by Dia Zeidan and published by Springer Nature. This book was released on 2022-05-18 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains select invited chapters on the latest research in numerical fluid dynamics and applications. The book aims at discussing the state-of-the-art developments and improvements in numerical fluid dynamics. All the chapters are presented for approximating and simulating how these methods and computations interact with different topics such as shock waves, non-equilibrium single and two-phase flows, elastic human-airway, and global climate. In addition to the fundamental research involving novel types of mathematical sciences, the book presents theoretical and numerical developments in fluid dynamics. The contributions by well-established global experts in fluid dynamics have brought different features of numerical fluid dynamics in a single book. The book serves as a useful resource for high-impact advances involving computational fluid dynamics, including recent developments in mathematical modelling, numerical methods such as finite volume, finite difference and finite element, symbolic computations, and open numerical programs such as OpenFOAM software. The book addresses interdisciplinary topics in industrial mathematics that lie at the forefront of research into new types of mathematical sciences, including theory and applications. This book will be beneficial to industrial and academic researchers, as well as graduate students, working in the fields of natural and engineering sciences. The book will provide the reader highly successful materials and necessary research in the field of fluid dynamics.

Book Research in Applied Mathematics  Fluid Mechanics and Computer Science

Download or read book Research in Applied Mathematics Fluid Mechanics and Computer Science written by and published by . This book was released on 1999 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Methods for Fluid Dynamics

Download or read book Computational Methods for Fluid Dynamics written by Joel H. Ferziger and published by Springer. This book was released on 2019-08-16 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a guide to numerical methods for solving fluid dynamics problems. The most widely used discretization and solution methods, which are also found in most commercial CFD-programs, are described in detail. Some advanced topics, like moving grids, simulation of turbulence, computation of free-surface flows, multigrid methods and parallel computing, are also covered. Since CFD is a very broad field, we provide fundamental methods and ideas, with some illustrative examples, upon which more advanced techniques are built. Numerical accuracy and estimation of errors are important aspects and are discussed in many examples. Computer codes that include many of the methods described in the book can be obtained online. This 4th edition includes major revision of all chapters; some new methods are described and references to more recent publications with new approaches are included. Former Chapter 7 on solution of the Navier-Stokes equations has been split into two Chapters to allow for a more detailed description of several variants of the Fractional Step Method and a comparison with SIMPLE-like approaches. In Chapters 7 to 13, most examples have been replaced or recomputed, and hints regarding practical applications are made. Several new sections have been added, to cover, e.g., immersed-boundary methods, overset grids methods, fluid-structure interaction and conjugate heat transfer.

Book Research in Progress  Applied and Numerical Mathematics

Download or read book Research in Progress Applied and Numerical Mathematics written by and published by . This book was released on 1996 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Summary of Research in Progress at ICASE

Download or read book Summary of Research in Progress at ICASE written by and published by . This book was released on 1993 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Efficient High Order Discretizations for Computational Fluid Dynamics

Download or read book Efficient High Order Discretizations for Computational Fluid Dynamics written by Martin Kronbichler and published by Springer Nature. This book was released on 2021-01-04 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.

Book Recent Advances in Pure and Applied Mathematics

Download or read book Recent Advances in Pure and Applied Mathematics written by Francisco Ortegón Gallego and published by Springer Nature. This book was released on 2020-04-11 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises high-quality works in pure and applied mathematics from the mathematical communities in Spain and Brazil. A wide range of subjects are covered, ranging from abstract algebra, including Lie algebras, commutative semigroups, and differential geometry, to optimization and control in real world problems such as fluid mechanics, the numerical simulation of cancer PDE models, and the stability of certain dynamical systems. The book is based on contributions presented at the Second Joint Meeting Spain-Brazil in Mathematics, held in Cádiz in December 2018, which brought together more than 330 delegates from around the world. All works were subjected to a blind peer review process. The book offers an excellent summary of the recent activity of Spanish and Brazilian research groups and will be of interest to researchers, PhD students, and graduate scholars seeking up-to-date knowledge on these pure and applied mathematics subjects.

Book Complex fluids

    Book Details:
  • Author : Pierre Saramito
  • Publisher : Springer
  • Release : 2016-10-26
  • ISBN : 3319443623
  • Pages : 287 pages

Download or read book Complex fluids written by Pierre Saramito and published by Springer. This book was released on 2016-10-26 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.

Book Advances in Fluid Mechanics

Download or read book Advances in Fluid Mechanics written by Dia Zeidan and published by Springer Nature. This book was released on 2022-06-06 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book provides invited and reviewed contributions in mathematical, physical and experimental modelling and simulations in all fluid mechanics branches. Contributions explore the emerging and state-of-the-art tools in the field authored by well-established researchers to derive improved performance of modelling and simulations. Serving the multidisciplinary fluid mechanics community, this book aims to publish new research work that enhances the prediction and understanding of fluid mechanics and balances from academic theory to practical applications through modelling, numerical studies, algorithms and simulation. The book offers researchers, students and practitioners significant insights on modelling and simulations in fluid mechanics. It offers readers a range of academic contributions on fluid mechanics by researchers that have become leaders in their field. The research work presented in this book will add values to the existing literature in terms of what needs to be done better to direct modelling and simulations towards a growing and rapidly developing field.