EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Representing Droplet Size Distribution and Cloud Processes in Aerosol cloud climate Interaction Studies

Download or read book Representing Droplet Size Distribution and Cloud Processes in Aerosol cloud climate Interaction Studies written by Wei-Chun Hsieh and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The indirect effect of aerosols expresses how changes in aerosols would influence clouds and cause impacts on Earth's climate and hydrological cycle. The current assessment of the interactions between aerosols and clouds is uncertain and parameterizations used to represent cloud processes are not well constrained. This thesis first evaluates a cloud activation parameterization by investigating cloud droplet number concentration closure for stratocumulus clouds sampled during the 2005 MArine Stratus Experiment (MASE). Further analysis of the droplet size distribution characteristics using the extended parameterization is performed by comparing the predicted droplet spectra with the observed ones. The effect of dynamical variability on the droplet size distribution evolution is also investigated by considering a probability density function for updraft velocity. The cumulus and stratocumulus cloud datasets from in-situ field measurements of NASA's Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) and Coastal STRatocumulus Imposed Perturbation Experiment (CSTRIPE) campaigns are used for this task. Using the same datasets, the autoconversion rate is calculated based on direct integration of kinematic collection equation (KCE). Six autoconversion parameterizations are evaluated and the effect of turbulence on magnifying collection process is also considered. Finally, a general circulation model (GCM) is used for studying the effect of different autoconversion parameterizations on indirect forcing estimates. The autoconversion rate given by direct KCE integration is also included by implementing a look-up table for collection kernels. Although these studies add more variability to the current estimate of aerosol indirect forcing, they also provide direction towards a more accurate assessment for climate prediction.

Book Opportunities to Improve Representation of Clouds and Aerosols in Climate Models with Classified Observing Systems

Download or read book Opportunities to Improve Representation of Clouds and Aerosols in Climate Models with Classified Observing Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2016-08-31 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most significant and uncertain aspects of climate change projections is the impact of aerosols on the climate system. Aerosols influence the climate indirectly by interacting with nearby clouds leading to small changes in cloud cover, thickness, and altitude, which significantly affect Earth's radiative balance. Advancements have been made in recent years on understanding the complex processes and atmospheric interactions involved when aerosols interact with surrounding clouds, but further progress has been hindered by limited observations. The National Academies of Sciences, Engineering, and Medicine organized a workshop to discuss the usefulness of the classified observing systems in advancing understanding of cloud and aerosol interactions. Because these systems were not developed with weather and climate modeling as a primary mission objective, many participants said it is necessary for scientists to find creative ways to utilize the data. The data from these systems have the potential to be useful in advancing understanding of cloud and aerosol interactions. This publication summarizes the presentations and discussions from the workshop.

Book Aerosol Cloud Climate Interactions

Download or read book Aerosol Cloud Climate Interactions written by Peter V. Hobbs and published by Academic Press. This book was released on 1993-07-22 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosol and clouds play important roles in determining the earth's climate, in ways that we are only beginning to comprehend. In conjunction with molecular scattering from gases, aerosol and clouds determine in part what fraction of solar radiation reaches the earth's surface, and what fraction of the longwave radiation from the earth escapes to space. This book provides an overview of the latest research on atmospheric aerosol and clouds and their effects on global climate. Subjects reviewed include the direct and indirect effects of aerosol on climate, the radiative properties of clouds and their effects on the Earth's radiation balance, the incorporation of cloud effects in numerical weather prediction models, and stratospheric aerosol and clouds.

Book On the Representation of Aerosol cloud Interactions in Atmospheric Models

Download or read book On the Representation of Aerosol cloud Interactions in Atmospheric Models written by Donifan Barahona and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Anthropogenic atmospheric aerosols (suspended particulate matter) can modify the radiative balance (and climate) of the Earth by altering the properties and global distribution of clouds. Current climate models however cannot adequately account for many important aspects of these aerosol-cloud interactions, ultimately leading to a large uncertainty in the estimation of the magnitude of the effect of aerosols on climate. This thesis focuses on the development of physically-based descriptions of aerosol-cloud processes in climate models that help to address some of such predictive uncertainty. It includes the formulation of a new analytical parameterization for the formation of ice clouds, and the inclusion of the effects of mixing and kinetic limitations in existing liquid cloud parameterizations. The parameterizations are analytical solutions to the cloud ice and water particle nucleation problem, developed within a framework that considers the mass and energy balances associated with the freezing and droplet activation of aerosol particles. The new frameworks explicitly account for the impact of cloud formation dynamics, the aerosol size and composition, and the dominant freezing mechanism (homogeneous vs. heterogeneous) on the ice crystal and droplet concentration and size distribution. Application of the new parameterizations is demonstrated in the NASA Global Modeling Initiative atmospheric and chemical and transport model to study the effect of aerosol emissions on the global distribution of ice crystal concentration, and, the effect of entrainment during cloud droplet activation on the global cloud radiative properties. The ice cloud formation framework is also used within a parcel ensemble model to understand the microphysical structure of cirrus clouds at very low temperature. The frameworks developed in this work provide an efficient, yet rigorous, representation of cloud formation processes from precursor aerosol. They are suitable for the study of the effect of anthropogenic aerosol emissions on cloud formation, and can contribute to the improvement of the predictive ability of atmospheric models and to the understanding of the impact of human activities on climate.

Book Aerosol Cloud Interactions from Urban  Regional  to Global Scales

Download or read book Aerosol Cloud Interactions from Urban Regional to Global Scales written by Yuan Wang and published by Springer. This book was released on 2015-05-05 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

Book Field and Laboratory Perspectives on the Cloud Nucleating Abilities of Aerosol Particles

Download or read book Field and Laboratory Perspectives on the Cloud Nucleating Abilities of Aerosol Particles written by Beth Friedman and published by . This book was released on 2014 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosol-cloud interactions represent a significant uncertainty with respect to radiative forcing and future climate change. Both particle composition and size play key, yet poorly understood, roles in determining the cloud nucleating capabilities of aerosols. The following describes ambient and laboratory measurements of cloud condensation nuclei (CCN) and ice nuclei (IN) measurements from a variety of sources, with the goal of understanding how composition and size interact in forming cloud droplets and ice crystals and the potential importance of aerosol composition and atmospheric aging processes on constraining uncertainties associated with the cloud nucleating properties of aerosols. Motivated by the anthropogenic emissions of soot particles as well as the potential properties of aged soot particles, ice formation and droplet activation of soot particles of various size and composition were studied. Generated soot particles were coated with a variety of atmospherically relevant acids of varying solubility properties. The particles were also exposed to ozone in order to simulate atmospheric oxidation and aging. A custom-built ice chamber was utilized to show that both uncoated and coated soot particles comparable to those generated in our studies are unlikely to significantly contribute to the global budget of heterogeneous IN at relevant atmospheric temperatures. This result is emphasized by comparison to an efficient ice nucleus, such as mineral dust. Coatings and oxidation by ozone also did not significantly alter the ice nucleation behavior of soot particles but aided in the uptake of water, suggesting the altered composition of a hydrophobic particle is important to take into account for cloud droplet activation. To assess the importance of particle composition in cloud droplet activation, measurements of CCN concentrations, single particle composition, and number size distributions were conducted at a high-elevation research site. The temporal evolution of detailed single particle chemical composition was compared with changes in CCN activation. A variety of particle types were observed; CCN activation largely followed the behavior of the sulfate-containing particle types; biomass burning particles also contained hygroscopic material that impacted CCN activation. The observed particles were largely aged; few local sources contributed to the particle composition due to the high elevation of the site. The results were also interpreted in terms of the assumed hygroscopicity of free tropospheric aerosol. As a further examination of the impacts of aging processes on aerosol hygroscopicity measurements of CCN concentrations, aerosol composition, and number size distributions were conducted during the winter season from of a variety of air masses, including aged marine, continental, and urban sources. Based on the measured chemistry and size properties of the ambient aerosol, CCN concentrations were predicted in order to assess the amount of composition detail necessary to explain droplet activation. Direct measurements of the composition of the activated droplets were also conducted with a novel technique to separate activated droplets from un-activated aerosol. Results suggest the importance of inorganic species in droplet activation, with non-oxidized organic species having negligible impacts on total aerosol hygroscopicity. Using the same novel separation technique, measurements of the single particle composition of activated droplet residual particles were determined at an urban site in the summertime, with similar air mass trajectories as the previous wintertime site, as well as influence from local urban aerosol sources. As a function of atmospheric supersaturation conditions the composition of activated droplet residual particles was compared to the ambient aerosol composition. The study was utilized to determine the level of composition and size detail required to describe droplet activation at a site with similar aged air mass trajectories to the previous study.

Book Mixed Phase Clouds

    Book Details:
  • Author : Constantin Andronache
  • Publisher : Elsevier
  • Release : 2017-09-28
  • ISBN : 012810550X
  • Pages : 302 pages

Download or read book Mixed Phase Clouds written by Constantin Andronache and published by Elsevier. This book was released on 2017-09-28 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. - Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate - Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry - Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling

Book The Relationship Between Aerosol and Drop Size Distributions in the Marine Atmosphere

Download or read book The Relationship Between Aerosol and Drop Size Distributions in the Marine Atmosphere written by and published by . This book was released on 1990 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: The characteristics of droplet size distributions near cloud base are initially determined by the aerosol particles that act as cloud condensation nuclei (CCN). Through physical and chemical processes that determine the fraction of aerosol particles that act as CCN, these particles profoundly affect the microphysical structure of clouds and their tendency to form precipitation. This paper provides a parametric study of the condensational growth on aerosol distributions from typical measurements in the marine atmosphere, and answers the following questions with respect to this process. (1) How does the condensationally produced droplet spectrum vary with the initial aerosol size distribution, aerosol number loading, and the updraft velocity (2) What is the fraction of aerosol particles that act as CCN This information can be applied to the future study to parameterize the number concentration of cloud droplets in climate models. (3) How do the optical properties of the cloud change as a result of the production of different droplet size distributions 8 figs.

Book Report of the Experts Meeting on Interaction Between Aerosols and Clouds

Download or read book Report of the Experts Meeting on Interaction Between Aerosols and Clouds written by Gabor Vali and published by . This book was released on 1991 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contained in this volume are the deliberations of the Experts Meeting on Interaction Between Clouds and Aerosols, held in Hampton, Virginia, 5-7 February 1991. Eight invited experts from universities, nonprofit institutions, research laboratories, and government agencies in France and the United States of America participated in the Meeting. Some of those who could not participate sent in their comments. The purpose of the Meeting was to bring together experts in measurements and impacts of interactions between clouds and aerosols to assess the current state of the art, and to make recommendations ofr developing a coordinated action plan for future work in these aspects of the International Global Aerosol Program (IGAP).--Preface.

Book Remote Sensing of Aerosols  Clouds  and Precipitation

Download or read book Remote Sensing of Aerosols Clouds and Precipitation written by Tanvir Islam and published by Elsevier. This book was released on 2017-10-18 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike. - Presents new approaches in the field, along with further research opportunities, based on the latest satellite data - Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences - Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field

Book A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change

Download or read book A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change written by Panel on Aerosol Radiative Forcing and Climate Change and published by National Academies Press. This book was released on 1996-05-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book recommends the initiation of an "integrated" research program to study the role of aerosols in the predicted global climate change. Current understanding suggest that, even now, aerosols, primarily from anthropogenic sources, may be reducing the rate of warming caused by greenhouse gas emissions. In addition to specific research recommendations, this book forcefully argues for two kinds of research program integration: integration of the individual laboratory, field, and theoretical research activities and an integrated management structure that involves all of the concerned federal agencies.

Book Encyclopedia of Atmospheric Sciences

Download or read book Encyclopedia of Atmospheric Sciences written by Gerald R. North and published by Elsevier. This book was released on 2014-09-14 with total page 2874 pages. Available in PDF, EPUB and Kindle. Book excerpt: Encyclopedia of Atmospheric Sciences, Second Edition, Six Volume Set is an authoritative resource covering all aspects of atmospheric sciences, including both theory and applications. With more than 320 articles and 1,600 figures and photographs, this revised version of the award-winning first edition offers comprehensive coverage of this important field. The six volumes in this set contain broad-ranging articles on topics such as atmospheric chemistry, biogeochemical cycles, boundary layers, clouds, general circulation, global change, mesoscale meteorology, ozone, radar, satellite remote sensing, and weather prediction. The Encyclopedia is an ideal resource for academia, government, and industry in the fields of atmospheric, ocean, and environmental sciences. It is written at a level that allows undergraduate students to understand the material, while providing active researchers with the latest information in the field. Covers all aspects of atmospheric sciences—including both theory and applications Presents more than 320 articles and more than 1,600 figures and photographs Broad-ranging articles include topics such as atmospheric chemistry, biogeochemical cycles, boundary layers, clouds, general circulation, global change, mesoscale meteorology, ozone, radar, satellite remote sensing, and weather prediction An ideal resource for academia, government, and industry in the fields of atmospheric, ocean, and environmental sciences

Book The Future of the World s Climate

Download or read book The Future of the World s Climate written by Ann Henderson-Sellers and published by Elsevier. This book was released on 2012-01-31 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The study of climate today seems to be dominated by global warming, but these predictions of climatic models must be placed in their geological, paleo-climatic, and astronomical context to create a complete picture of the Earth's future climate. The Future of the World's Climate presents that perspective with data and projections that have emerged from more technologically advanced and accurate climate modeling"--Publisher's website.

Book Cloud Dynamics

Download or read book Cloud Dynamics written by PRUPPACHER and published by Birkhäuser. This book was released on 1976 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Parameterization of Cloud Droplet Nucleation

Download or read book A Parameterization of Cloud Droplet Nucleation written by and published by . This book was released on 1994 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-interactions, the droplet nucleation process must be adequately represented. Ghan et al. have introduced a droplet nucleation parameterization for a single aerosol type that offers certain advantages over the popular Twomey parameterization. Here we describe the generalization of that parameterization to the case of multiple aerosol types, with estimation of aerosol mass as well as number activated.

Book Aerosol Cloud Precipitation Interactions in Moist Orographic Flows

Download or read book Aerosol Cloud Precipitation Interactions in Moist Orographic Flows written by Andreas Mühlbauer and published by Sudwestdeutscher Verlag Fur Hochschulschriften AG. This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosols are ubiquitous in the Earth's atmosphere and influence the climate system through their interactions with clouds and radiation. With their ability to serve as cloud condensation nuclei and ice nuclei aerosols influence microphysical processes in clouds thereby potentially affecting precipitation. In this book the possible effects of aerosols on orographic precipitation are investigated with a numerical model.

Book Atmospheric Aerosols

    Book Details:
  • Author : Olivier Boucher
  • Publisher : Springer
  • Release : 2015-05-18
  • ISBN : 9401796491
  • Pages : 322 pages

Download or read book Atmospheric Aerosols written by Olivier Boucher and published by Springer. This book was released on 2015-05-18 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook aims to be a one stop shop for those interested in aerosols and their impact on the climate system. It starts with some fundamentals on atmospheric aerosols, atmospheric radiation and cloud physics, then goes into techniques used for in-situ and remote sensing measurements of aerosols, data assimilation, and discusses aerosol-radiation interactions, aerosol-cloud interactions and the multiple impacts of aerosols on the climate system. The book aims to engage those interested in aerosols and their impacts on the climate system: graduate and PhD students, but also post-doctorate fellows who are new to the field or would like to broaden their knowledge. The book includes exercises at the end of most chapters. Atmospheric aerosols are small (microscopic) particles in suspension in the atmosphere, which play multiple roles in the climate system. They interact with the energy budget through scattering and absorption of solar and terrestrial radiation. They also serve as cloud condensation and ice nuclei with impacts on the formation, evolution and properties of clouds. Finally aerosols also interact with some biogeochemical cycles. Anthropogenic emissions of aerosols are responsible for a cooling effect that has masked part of the warming due to the increased greenhouse effect since pre-industrial time. Natural aerosols also respond to climate changes as shown by observations of past climates and modelling of the future climate.