Download or read book Representation Theory and Noncommutative Harmonic Analysis II written by A.A. Kirillov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Download or read book Representation Theory and Analysis on Homogeneous Spaces written by Semen Grigorʹevich Gindikin and published by American Mathematical Soc.. This book was released on 1994 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A combination of new results and surveys of recent work on representation theory and the harmonic analysis of real and p-adic groups. Among the topics are nilpotent homogeneous spaces, multiplicity formulas for induced representations, and new methods for constructing unitary representations of real reductive groups. The 12 papers are from a conference at Rutgers University, February 1993. No index. Annotation copyright by Book News, Inc., Portland, OR
Download or read book Harmonic Analysis on Homogeneous Spaces written by Nolan R. Wallach and published by Courier Dover Publications. This book was released on 2018-12-18 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is suitable for advanced undergraduate and graduate students in mathematics with a strong background in linear algebra and advanced calculus. Early chapters develop representation theory of compact Lie groups with applications to topology, geometry, and analysis, including the Peter-Weyl theorem, the theorem of the highest weight, the character theory, invariant differential operators on homogeneous vector bundles, and Bott's index theorem for such operators. Later chapters study the structure of representation theory and analysis of non-compact semi-simple Lie groups, including the principal series, intertwining operators, asymptotics of matrix coefficients, and an important special case of the Plancherel theorem. Teachers will find this volume useful as either a main text or a supplement to standard one-year courses in Lie groups and Lie algebras. The treatment advances from fairly simple topics to more complex subjects, and exercises appear at the end of each chapter. Eight helpful Appendixes develop aspects of differential geometry, Lie theory, and functional analysis employed in the main text.
Download or read book Geometric and Harmonic Analysis on Homogeneous Spaces written by Ali Baklouti and published by Springer Nature. This book was released on 2019-08-31 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a number of important contributions focusing on harmonic analysis and representation theory of Lie groups. All were originally presented at the 5th Tunisian–Japanese conference “Geometric and Harmonic Analysis on Homogeneous Spaces and Applications”, which was held at Mahdia in Tunisia from 17 to 21 December 2017 and was dedicated to the memory of the brilliant Tunisian mathematician Majdi Ben Halima. The peer-reviewed contributions selected for publication have been modified and are, without exception, of a standard equivalent to that in leading mathematical periodicals. Highlighting the close links between group representation theory and harmonic analysis on homogeneous spaces and numerous mathematical areas, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics, the book is intended for researchers and students working in the area of commutative and non-commutative harmonic analysis as well as group representations.
Download or read book Homogeneous Spaces and Equivariant Embeddings written by D.A. Timashev and published by Springer. This book was released on 2011-04-07 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space, it is natural and helpful to compactify it while keeping track of the group action, i.e., to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on the classification of equivariant embeddings in terms of certain data of "combinatorial" nature (the Luna-Vust theory) and description of various geometric and representation-theoretic properties of these varieties based on these data. The class of spherical varieties, intensively studied during the last three decades, is of special interest in the scope of this book. Spherical varieties include many classical examples, such as Grassmannians, flag varieties, and varieties of quadrics, as well as well-known toric varieties. We have attempted to cover most of the important issues, including the recent substantial progress obtained in and around the theory of spherical varieties.
Download or read book Algebraic and Analytic Methods in Representation Theory written by and published by Elsevier. This book was released on 1996-09-27 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field
Download or read book An Introduction to Lie Groups and the Geometry of Homogeneous Spaces written by Andreas Arvanitogeōrgos and published by American Mathematical Soc.. This book was released on 2003 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of other topics. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The book is suitable for advanced undergraduates, graduate students, and research mathematicians interested in differential geometry and neighboring fields, such as topology, harmonic analysis, and mathematical physics.
Download or read book Harmonic Analysis on Homogeneous Spaces written by Calvin C. Moore and published by American Mathematical Society(RI). This book was released on 1973 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Representation Theory written by Pavel I. Etingof and published by American Mathematical Soc.. This book was released on 2011 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Download or read book Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces written by M. Bachir Bekka and published by Cambridge University Press. This book was released on 2000-05-11 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.
Download or read book Groups and Geometric Analysis written by Sigurdur Helgason and published by American Mathematical Society. This book was released on 2022-03-17 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.
Download or read book Analysis on Homogeneous Spaces and Representation Theory of Lie Groups Okayama Kyoto written by Toshiyuki Kobayashi and published by Japan Playwrights Association. This book was released on 2000 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an outgrowth of the activities of the RIMS Research Project, which presented symposia offering both individual lectures on specialized topics and expository courses on current research. The subjects therein reflect very active areas in the representation theory of Lie groups. Also included are various topical interactions with geometry of homogeneous spaces, automorphic forms, quantum groups, special functions, discrete groups, differential equations, and others. Comprising results from active areas of research, this volume should serve as an excellent guide to the representation theory of Lie groups.
Download or read book Lie Groups Geometry and Representation Theory written by Victor G. Kac and published by Springer. This book was released on 2018-12-12 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)
Download or read book Introduction to the Representation Theory of Compact and Locally Compact Groups written by Alain Robert and published by Cambridge University Press. This book was released on 1983-02-10 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of their significance in physics and chemistry, representation of Lie groups has been an area of intensive study by physicists and chemists, as well as mathematicians. This introduction is designed for graduate students who have some knowledge of finite groups and general topology, but is otherwise self-contained. The author gives direct and concise proofs of all results yet avoids the heavy machinery of functional analysis. Moreover, representative examples are treated in some detail.
Download or read book Fundamentals of Infinite Dimensional Representation Theory written by Raymond C. Fabec and published by CRC Press. This book was released on 2018-10-03 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite dimensional representation theory blossomed in the latter half of the twentieth century, developing in part with quantum mechanics and becoming one of the mainstays of modern mathematics. Fundamentals of Infinite Dimensional Representation Theory provides an accessible account of the topics in analytic group representation theory and operator algebras from which much of the subject has evolved. It presents new and old results in a coherent and natural manner and studies a number of tools useful in various areas of this diversely applied subject. From Borel spaces and selection theorems to Mackey's theory of induction, measures on homogeneous spaces, and the theory of left Hilbert algebras, the author's self-contained treatment allows readers to choose from a wide variety of topics and pursue them independently according to their needs. Beyond serving as both a general reference and as a text for those requiring a background in group-operator algebra representation theory, for careful readers, this monograph helps reveal not only the subject's utility, but also its inherent beauty.
Download or read book Representation Theory and Noncommutative Harmonic Analysis I written by Alexandre Kirillov and published by Springer Science & Business Media. This book was released on 1994-11-23 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part survey provides a short review of the classical part of representation theory, carefully exposing the structure of the theory without overwhelming readers with details, and deals with representations of Virasoro and Kac-Moody algebra. It presents a wealth of recent results on representations of infinite-dimensional groups.
Download or read book A Course in Finite Group Representation Theory written by Peter Webb and published by Cambridge University Press. This book was released on 2016-08-19 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.