EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Repair of Phase Defects in Extreme Ultraviolet Lithography Mask Blanks

Download or read book Repair of Phase Defects in Extreme Ultraviolet Lithography Mask Blanks written by and published by . This book was released on 2004 with total page 49 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Novel EUV Mask Blank Defect Repair Developments

Download or read book Novel EUV Mask Blank Defect Repair Developments written by and published by . This book was released on 2003 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of defect-free reticle blanks is an important challenge facing the commercialization of extreme ultraviolet lithography (EUVL). The basis of EUVL reticles are mask blanks consisting of a substrate and a reflective Mo/Si multilayer. Defects on the substrate or defects introduced during multilayer deposition can result in critical phase and amplitude defects. Amplitude- or phase-defect repair techniques are being developed with the goal to repair many of these defects. In this report, we discuss progress in two areas of defect repair: (1) We discuss the effect of the residual reflectance variation over the repair zone after amplitude-defect repair on the process window. This allows the determination of the maximum tolerable residual damage induced by amplitude defect repair. (2) We further performed a quantitative assessment of the yield improvement due to defect repair. We found that amplitude- and phase-defect repair have the potential to significantly improve mask blank yield. Our calculations further show that yield can be maximized by increasing the number of Mo/Si bilayers.

Book Growth and Printability of Multilayer Phase Defects on EUV MaskBlanks

Download or read book Growth and Printability of Multilayer Phase Defects on EUV MaskBlanks written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to fabricate defect-free mask blanks is a well-recognized challenge in enabling extreme ultraviolet lithography (EUVL) for semiconductor manufacturing. Both the specification and reduction of defects necessitate the understanding of their printability and how they are generated and grow during Mo-Si multilayer (ML) deposition. A ML phase defect can be depicted by its topographical profile on the surface as either a bump or pit, which is then characterized by height or depth and width. The complexity of such seemingly simple phase defects lies in the many ways they can be generated and the difficulties of measuring their physical shape/size and optical effects on printability. An effective way to study phase defects is to use a programmed defect mask (PDM) as 'model' test sample where the defects are produced with controlled growth on a ML blank and accurate placement in varying proximity to absorber patterns on the mask. This paper describes our recent study of ML phase defect printability with resist data from exposures of a ML PDM on the EUV micro-exposure tool (MET, 5X reduction with 0.3NA).

Book EUV Lithography

    Book Details:
  • Author : Vivek Bakshi
  • Publisher : SPIE Press
  • Release : 2009
  • ISBN : 0819469645
  • Pages : 704 pages

Download or read book EUV Lithography written by Vivek Bakshi and published by SPIE Press. This book was released on 2009 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Editorial Review Dr. Bakshi has compiled a thorough, clear reference text covering the important fields of EUV lithography for high-volume manufacturing. This book has resulted from his many years of experience in EUVL development and from teaching this subject to future specialists. The book proceeds from an historical perspective of EUV lithography, through source technology, optics, projection system design, mask, resist, and patterning performance, to cost of ownership. Each section contains worked examples, a comprehensive review of challenges, and relevant citations for those who wish to further investigate the subject matter. Dr. Bakshi succeeds in presenting sometimes unfamiliar material in a very clear manner. This book is also valuable as a teaching tool. It has become an instant classic and far surpasses others in the EUVL field. --Dr. Akira Endo, Chief Development Manager, Gigaphoton Inc. Description Extreme ultraviolet lithography (EUVL) is the principal lithography technology aiming to manufacture computer chips beyond the current 193-nm-based optical lithography, and recent progress has been made on several fronts: EUV light sources, optics, optics metrology, contamination control, masks and mask handling, and resists. This comprehensive volume is comprised of contributions from the world's leading EUVL researchers and provides all of the critical information needed by practitioners and those wanting an introduction to the field. Interest in EUVL technology continues to increase, and this volume provides the foundation required for understanding and applying this exciting technology. About the editor of EUV Lithography Dr. Vivek Bakshi previously served as a senior member of the technical staff at SEMATECH; he is now president of EUV Litho, Inc., in Austin, Texas.

Book Microlithography

Download or read book Microlithography written by Bruce W. Smith and published by CRC Press. This book was released on 2018-10-03 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from elementary concepts to advanced aspects of modern submicron microlithography. Each chapter reflects the current research and practices from the world's leading academic and industrial laboratories detailed by a stellar panel of international experts. New in the Second Edition In addition to updated information on existing material, this new edition features coverage of technologies developed over the last decade since the first edition appeared, including: Immersion Lithography 157nm Lithography Electron Projection Lithography (EPL) Extreme Ultraviolet (EUV) Lithography Imprint Lithography Photoresists for 193nm and Immersion Lithography Scatterometry Microlithography: Science and Technology, Second Edition authoritatively covers the physics, chemistry, optics, metrology tools and techniques, resist processing and materials, and fabrication methods involved in the latest generations of microlithography such as immersion lithography and extreme ultraviolet (EUV) lithography. It also looks ahead to the possible future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current literature, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to achieve robust, accurate, and cost-effective microlithography processes and systems.

Book Fast Simulation Methods for Non planar Phase and Multilayer Defects in DUV and EUV Photomasks for Lithography

Download or read book Fast Simulation Methods for Non planar Phase and Multilayer Defects in DUV and EUV Photomasks for Lithography written by Michael Christopher Lam and published by . This book was released on 2005 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Principles of Lithography

Download or read book Principles of Lithography written by Harry J. Levinson and published by SPIE Press. This book was released on 2005 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithography is a field in which advances proceed at a swift pace. This book was written to address several needs, and the revisions for the second edition were made with those original objectives in mind. Many new topics have been included in this text commensurate with the progress that has taken place during the past few years, and several subjects are discussed in more detail. This book is intended to serve as an introduction to the science of microlithography for people who are unfamiliar with the subject. Topics directly related to the tools used to manufacture integrated circuits are addressed in depth, including such topics as overlay, the stages of exposure, tools, and light sources. This text also contains numerous references for students who want to investigate particular topics in more detail, and they provide the experienced lithographer with lists of references by topic as well. It is expected that the reader of this book will have a foundation in basic physics and chemistry. No topics will require knowledge of mathematics beyond elementary calculus.

Book Nanofabrication

    Book Details:
  • Author : Ampere A. Tseng
  • Publisher : World Scientific
  • Release : 2008
  • ISBN : 9812705422
  • Pages : 583 pages

Download or read book Nanofabrication written by Ampere A. Tseng and published by World Scientific. This book was released on 2008 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of the devices and systems used in modern industry are becoming progressively smaller and have reached the nanoscale domain. Nanofabrication aims at building nanoscale structures, which can act as components, devices, or systems, in large quantities at potentially low cost. Nanofabrication is vital to all nanotechnology fields, especially for the realization of nanotechnology that involves the traditional areas across engineering and science. This is the first book solely dedicated to the manufacturing technology in nanoscale structures, devices, and systems and is designed to satisfy the growing demands of researchers, professionals, and graduate students.Both conventional and non-conventional fabrication technologies are introduced with emphasis on multidisciplinary principles, methodologies, and practical applications. While conventional technologies consider the emerging techniques developed for next generation lithography, non-conventional techniques include scanning probe microscopy lithography, self-assembly, and imprint lithography, as well as techniques specifically developed for making carbon tubes and molecular circuits and devices.

Book A Method for Repairing Amplitude Defects in Multilayer coated EUV Mask Blanks

Download or read book A Method for Repairing Amplitude Defects in Multilayer coated EUV Mask Blanks written by and published by . This book was released on 2003 with total page 6545 pages. Available in PDF, EPUB and Kindle. Book excerpt: EUV mask blanks are fabricated by depositing a reflective Mo/Si multilayer film onto super-polished substrates. Localized defects in this thin film coating can significantly perturb the reflected field and produce errors in the printed image. Ideally one would want to manufacture defect-free mask blanks; however, this may be very difficult to achieve in practice. One practical way to increase the yield of mask blanks is to be able to repair a significant number of the defects in the multilayer coating. In this paper we present a method for repairing defects that are near the top surface of the coating; we call these amplitude defects because they predominantly attenuate the amplitude of the reflected field. Although the discussion is targeted to the application of manufacturing masks for EUV lithography, the conclusions and results are also applicable to understanding the optical effects of multilayer erosion, including ion-induced multilayer erosion and condenser erosion in EUVL steppers.

Book Handbook of Photomask Manufacturing Technology

Download or read book Handbook of Photomask Manufacturing Technology written by Syed Rizvi and published by CRC Press. This book was released on 2018-10-03 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the semiconductor industry attempts to increase the number of functions that will fit into the smallest space on a chip, it becomes increasingly important for new technologies to keep apace with these demands. Photomask technology is one of the key areas to achieving this goal. Although brief overviews of photomask technology exist in the literature, the Handbook of Photomask Manufacturing Technology is the first in-depth, comprehensive treatment of existing and emerging photomask technologies available. The Handbook of Photomask Manufacturing Technology features contributions from 40 internationally prominent authors from industry, academia, government, national labs, and consortia. These authors discuss conventional masks and their supporting technologies, as well as next-generation, non-optical technologies such as extreme ultraviolet, electron projection, ion projection, and x-ray lithography. The book begins with an overview of the history of photomask development. It then demonstrates the steps involved in designing, producing, testing, inspecting, and repairing photomasks, following the sequences observed in actual production. The text also includes sections on materials used as well as modeling and simulation. Continued refinements in the photomask-making process have ushered in the sub-wavelength era in nanolithography. This invaluable handbook synthesizes these refinements and provides the tools and possibilities necessary to reach the next generation of microfabrication technologies.

Book Nanolithography

Download or read book Nanolithography written by M Feldman and published by Woodhead Publishing. This book was released on 2014-02-13 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing – some components are now just a few dozen atoms wide. This book attempts to answer the questions, "What comes next? and "How do we get there?Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics.This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. - Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions - Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography - Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics

Book Low defect Reflective Mask Blanks for Extreme Ultraviolet Lithography

Download or read book Low defect Reflective Mask Blanks for Extreme Ultraviolet Lithography written by and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Extreme Ultraviolet Lithgraphy (EUVL) is an emerging technology for fabrication of sub-100 nm feature sizes on silicon, following the SIA roadmap well into the 21st century. The specific EUVL system described is a scanned, projection lithography system with a 4:1 reduction, using a laser plasma EUV source. The mask and all of the system optics are reflective, multilayer mirrors which function in the extreme ultraviolet at 13.4 nm wavelength. Since the masks are imaged to the wafer exposure plane, mask defects greater than 80% of the exposure plane CD (for 4:1 reduction) will in many cases render the mask useless, whereas intervening optics can have defects which are not a printing problem. For the 100 nm node, we must reduce defects to less than 0.01/cm2 @ 80nm or larger to obtain acceptable mask production yields. We have succeeded in reducing the defects to less than 0.1/cm2 for defects larger than 130 nm detected by visible light inspection tools, however our program goal is to achieve 0.01/cm2 in the near future. More importantly though, we plan to have a detailed understanding of defect origination and the effect on multilayer growth in order to mitigate defects below the 10-2/cm2 level on the next generation of mask blank deposition systems. In this paper we will discuss issues and results from the ion-beam multilayer deposition tool, details of the defect detection and characterization facility, and progress on defect printability modeling.

Book Method to Repair Localized Amplitude Defects in a EUV Lithography Mask Blank

Download or read book Method to Repair Localized Amplitude Defects in a EUV Lithography Mask Blank written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A method and apparatus are provided for the repair of an amplitude defect in a multilayer coating. A significant number of layers underneath the amplitude defect are undamaged. The repair technique restores the local reflectivity of the coating by physically removing the defect and leaving a wide, shallow crater that exposes the underlying intact layers. The particle, pit or scratch is first removed the remaining damaged region is etched away without disturbing the intact underlying layers.

Book Emerging Lithographic Technologies

Download or read book Emerging Lithographic Technologies written by and published by . This book was released on 2007 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Low Defect Multilayers for EUVL Mask Blanks

Download or read book Advances in Low Defect Multilayers for EUVL Mask Blanks written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-defect multilayer coatings are required to fabricate mask blanks for Extreme Ultraviolet Lithography (EUVL). The mask blanks consist of high reflectance E W multilayers on low thermal expansion substrates. A defect density of 0.0025 printable defects/cm2 for both the mask substrate and the multilayer is required to provide a mask blank yield of 60%. Current low defect multilayer coating technology allows repeated coating-added defect levels of 0.05/cm2 for defects greater than 90 nm polystyrene latex sphere (PSL) equivalent size for lots of 20 substrates. Extended clean operation of the coating system at levels below 0.08/cm2 for 3 months of operation has also been achieved. Two substrates with zero added defects in the quality area have been fabricated, providing an existence proof that ultra low defect coatings are possible. Increasing the ion source-to-target distance from 410 to 560 mm to reduce undesired coating of the ion source caused the defect density to increase to 0.2/cm2. Deposition and etching diagnostic witness substrates and deposition pinhole cameras showed a much higher level of ion beam spillover (ions missing the sputter target) than expected. Future work will quantify beam spillover, and test designs to reduce spillover, if it is confirmed to be the cause of the increased defect level. The LDD system will also be upgraded to allow clean coating of standard format mask substrates. The upgrade will confirm that the low defect process developed on Si wafers is compatible with the standard mask format 152 mm square substrates, and will provide a clean supply of EUVL mask blanks needed to support development of EUVL mask patterning processes and clean mask handling technologies.