Download or read book Progress In Analysis Proceedings Of The 3rd Isaac Congress In 2 Volumes written by Heinrich G W Begehr and published by World Scientific. This book was released on 2003-08-04 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: The biannual ISAAC congresses provide information about recent progress in the whole area of analysis including applications and computation. This book constitutes the proceedings of the third meeting.
Download or read book The Asian Journal of Mathematics written by and published by . This book was released on 2007 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Reviews written by and published by . This book was released on 2007 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hyperbolic Partial Differential Equations written by Serge Alinhac and published by Springer Science & Business Media. This book was released on 2009-06-17 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher.
Download or read book Numerical Methods for Conservation Laws written by LEVEQUE and published by Birkhäuser. This book was released on 2013-11-11 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Download or read book Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma written by E.V. Chizhonkov and published by CRC Press. This book was released on 2019-04-08 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to research in the actual field of mathematical modeling in modern problems of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse. The author explores the hydrodynamic model of the wake wave in detail and from different points of view, within the framework of its regular propagation, a development suitable for accelerating electrons, and the final tipping effect resulting in unregulated energy transfer to plasma particles. Key selling features: Presents research directly related to the propagation of super-power short laser pulses (subject of the 2018 Nobel Prize in Physics). Presents mathematical modeling of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse. Includes studies of large-amplitude plasma oscillations. Most of the presented results are of original nature and have not appeared in the domestic and foreign scientific literature Written at a level accessible for researchers, academia, and engineers.
Download or read book Finite Volume Methods for Hyperbolic Problems written by Randall J. LeVeque and published by Cambridge University Press. This book was released on 2002-08-26 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Download or read book Kinetic Formulation of Conservation Laws written by B. Perthame and published by Oxford University Press. This book was released on 2002-12-05 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a well-known expert in the field, the focus of this book is on an innovative mathematical and numerical theory which applies to classical models of physics such as shock waves and balance laws. The text is based on early works in common with P.L. Lions (field medalist).
Download or read book The Porous Medium Equation written by Juan Luis Vazquez and published by Clarendon Press. This book was released on 2006-10-26 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Heat Equation is one of the three classical linear partial differential equations of second order that form the basis of any elementary introduction to the area of PDEs, and only recently has it come to be fairly well understood. In this monograph, aimed at research students and academics in mathematics and engineering, as well as engineering specialists, Professor Vazquez provides a systematic and comprehensive presentation of the mathematical theory of the nonlinear heat equation usually called the Porous Medium Equation (PME). This equation appears in a number of physical applications, such as to describe processes involving fluid flow, heat transfer or diffusion. Other applications have been proposed in mathematical biology, lubrication, boundary layer theory, and other fields. Each chapter contains a detailed introduction and is supplied with a section of notes, providing comments, historical notes or recommended reading, and exercises for the reader.
Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Download or read book Nonlinear Problems of Elasticity written by Stuart Antman and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.
Download or read book Quasilinear Hyperbolic Systems Compressible Flows and Waves written by Vishnu D. Sharma and published by CRC Press. This book was released on 2010-04-29 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filled with practical examples, Quasilinear Hyperbolic Systems, Compressible Flows, and Waves presents a self-contained discussion of quasilinear hyperbolic equations and systems with applications. It emphasizes nonlinear theory and introduces some of the most active research in the field.After linking continuum mechanics and quasilinear partial di
Download or read book Comprehensive Dissertation Index written by and published by . This book was released on 1989 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Methods In Electromagnetism Linear Theory And Applications written by Michel Cessenat and published by World Scientific. This book was released on 1996-07-13 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with basic tools to solve problems of electromagnetism in their natural functional frameworks thanks to modern mathematical methods: integral surface methods, and also semigroups, variational methods, etc., well adapted to a numerical approach.As examples of applications of these tools and concepts, we solve several fundamental problems of electromagnetism, stationary or time-dependent: scattering of an incident wave by an obstacle, bounded or not, by gratings; wave propagation in a waveguide, with junctions and cascades. We hope that mathematical notions will allow a better understanding of modelization in electromagnetism and emphasize the essential features related to the geometry and nature of materials.
Download or read book Free Boundary Problems in Continuum Mechanics written by Stanislav Nikolaevich Antont︠s︡ev and published by Springer Science & Business Media. This book was released on 1992 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some extremum and unilateral boundary value problems in viscous hydrodynamics.- On axisymmetric motion of the fluid with a free surface.- On the occurrence of singularities in axisymmetrical problems of hele-shaw type.- New asymptotic method for solving of mixed boundary value problems.- Some results on the thermistor problem.- New applications of energy methods to parabolic and elliptic free boundary problems.- A localized finite element method for nonlinear water wave problems.- Approximate method of investigation of normal oscillations of viscous incompressible liquid in container.- The classical Stefan problem as the limit case of the Stefan problem with a kinetic condition at the free boundary.- A mathematical model of oscillations energy dissipation of viscous liquid in a tank.- Existence of the classical solution of a two-phase multidimensional Stefan problem on any finite time interval.- Asymptotic theory of propagation of nonstationary surface and internal waves over uneven bottom.- Multiparametric problems of two-dimensional free boundary seepage.- Nonisothermal two-phase filtration in porous media.- Explicit solution of time-dependent free boundary problems.- Nonequilibrium phase transitions in frozen grounds.- System of variational inequalities arising in nonlinear diffusion with phase change.- Contact viscoelastoplastic problem for a beam.- Application of a finite-element method to two-dimensional contact problems.- Computations of a gas bubble motion in liquid.- Waves on the liquid-gas free surface in the presence of the acoustic field in gas.- Smooth bore in a two-layer fluid.- Numerical calculation of movable free and contact boundaries in problems of dynamic deformation of viscoelastic bodies.- On the canonical variables for two-dimensional vortex hydrodynamics of incompressible fluid.- About the method with regularization for solving the contact problem in elasticity.- Space evolution of tornado-like vortex core.- Optimal shape design for parabolic system and two-phase Stefan problem.- Incompressible fluid flows with free boundary and the methods for their research.- On the Stefan problems for the system of equations arising in the modelling of liquid-phase epitaxy processes.- Stefan problem with surface tension as a limit of the phase field model.- The modelization of transformation phase via the resolution of an inclusion problem with moving boundary.- To the problem of constructing weak solutions in dynamic elastoplasticity.- The justification of the conjugate conditions for the Euler's and Darcy's equations.- On an evolution problem of thermo-capillary convection.- Front tracking methods for one-dimensional moving boundary problems.- On Cauchy problem for long wave equations.- On fixed point (trial) methods for free boundary problems.- Nonlinear theory of dynamics of a viscous fluid with a free boundary in the process of a solid body wetting.
Download or read book Nonlinear Evolution Equations That Change Type written by Barbara L. Keyfitz and published by Springer Science & Business Media. This book was released on 1990-09-24 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications NONLINEAR EVOLUTION EQUATIONS THAT CHANGE TYPE is based on the proceedings of a workshop which was an integral part of the 1988-89 IMA program on NONLINEAR WAVES. The workshop focussed on prob lems of ill-posedness and change of type which arise in modeling flows in porous materials, viscoelastic fluids and solids and phase changes. We thank the Coordinat ing Committee: James Glimm, Daniel Joseph, Barbara Lee Keyfitz, Andrew Majda, Alan Newell, Peter Olver, David Sattinger and David Schaeffer for planning and implementing an exciting and stimulating year-long program. We especially thank the workshop organizers, Barbara Lee Keyfitz and Michael Shearer, for their efforts in bringing together many of the major figures in those research fields in which theories for nonlinear evolution equations that change type are being developed. A vner Friedman Willard Miller, J r. ix PREFACE During the winter and spring quarters of the 1988/89 IMA Program on Non linear Waves, the issue of change of type in nonlinear partial differential equations appeared frequently. Discussion began with the January 1989 workshop on Two Phase Waves in Fluidized Beds, Sedimentation and Granular Flow; some of the papers in the proceedings of that workshop present strategies designed to avoid the appearance of change of type in models for multiphase fluid flow.